A Multi-Party Scheme for Privacy-Preserving Clustering
Abstract
Preserving data privacy while conducting data clustering among multiple parties is a demanding problem. We address this challenging problem in the following scenario: without disclosing their private data to each other, multiple parties, each having a private data set, want to collaboratively conduct k-medoids clustering. To tackle this problem, we develop secure protocols for multiple parties to achieve this dual goal. The solution is distributed, i.e., there is no central, trusted party having access to all the data. Instead, we define a protocol using homomorphic encryption and digital envelope techniques to exchange the data while keeping it private.