Mapowanie informacji z baz danych za pomocą sieci neuronowych samoorganizujących się

Authors

  • Jerzy Tchórzewski
  • I. Kwiczak

Abstract

W chwili obecnej do pomiaru stopnia informatyzacji urzędów państwowych stosuje się różnego rodzaju mierniki i co najwyżej statystyczne mapy informacyjne. Metody te w dobie prac przygotowawczych do programu zwanego Administracja w ramach programów ePolska [13] i eEurope [4] nie spełniają oczekiwanych funkcji, gdyż decydenci potrzebują informacji wizyjnej z możliwością jej drążenia. Podejmując tę problematykę opracowano Administracji jako systemu sztucznej inteligencji [18] i w dalszych badaniach opracowano dla tych potrzeb sposób mapowania wiedzy na przykładzie wiedzy zawartej w bazach danych. Dla celów weryfikacji opracowanego algorytmu opracowano przykładowe bazy danych zawierające informację dotyczącą wyposażenia urzędów państwowych w sprzęt i oprogramowanie. Do mapowania wiedzy wykorzystano sieci neuronowe samoorganizujące się – algorytm Kohenona z Euklidesową miarą odległości.

Downloads

Download data is not yet available.

Published

15.06.2004

How to Cite

Tchórzewski, J., & Kwiczak, I. (2004). Mapowanie informacji z baz danych za pomocą sieci neuronowych samoorganizujących się. Studia Informatica. System and Information Technology, 3(1), 99-105. https://czasopisma.uws.edu.pl/studiainformatica/article/view/2898