Neural model of human gait and its implementation in MATLAB and Simulink Environment using Deep Learning Toolbox

Authors

  • Jerzy Tchórzewski
  • Arkadiusz Wielgo

DOI:

https://doi.org/10.34739/si.2021.25.03

Keywords:

Artificial Neural Network, Deep Learning Toolbox, Humanoid Robots, MATLAB and Simulink Environment, Modeling of Human Walking Motion

Abstract

The article presents selected results of research on the modeling of humanoid robots, including the results of neural modeling of human gait and its implementation in the environment MATLAB and Simulink with the use of Deep Learning Toolbox. The subject of the research was placed within the scope of the available literature on the subject. Then, appropriate research experiments on human movement along a given trajectory were developed. First, the method of measuring the parameters present in the experiment was established, i.e. input quantities (displacement of the left heel, displacement of the right heel) and output quantities (displacement of the measurement point of the human body in space). Then, research experiments were carried out, as a result of which numerical data were measured in order to use them for teaching and testing the Artificial Neural Network. The Perceptron Artificial Neural Network architecture was used to build a model of a neural human walk along a given trajectory. The obtained results were discussed and interpreted, drawing a number of important conclusions.

Downloads

Download data is not yet available.

Downloads

Published

23.12.2021

How to Cite

Tchórzewski, J., & Wielgo, A. (2021). Neural model of human gait and its implementation in MATLAB and Simulink Environment using Deep Learning Toolbox. Studia Informatica. System and Information Technology, 25(1-2), 39-65. https://doi.org/10.34739/si.2021.25.03