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Abstract. Graphics processing units (GPU) have become the foundation of artificial
intelligence. Machine learning was slow, inaccurate, and inadequate for many of today’s
applications. The inclusion and utilization of GPUs made a remarkable difference in
large neural networks. The numerous core processors on a GPU allow machine learning
engineers to train complex models using many files relatively quickly. The ability to
rapidly perform multiple computations in parallel is what makes them so effective; with
a powerful processor, the model can make statistical predictions about very large amounts
of data. GPUs are widely used in machine learning because they offer more power and
speed than CPUs. In this paper, we show the use of GPU for solving a scheduling
problem. The results show that this idea is useful, especially for large optimization
problems.
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1 Introduction

Machine learning on GPUs has become a popular topic in the field of data science. GPUs
are specialized hardware that can perform parallel computations much faster than CPUs.
This makes them ideal for training machine learning models, which often require a lot of
computational power. According to NVIDIA [1], GPUs can help train machine learning
models faster and more efficiently. The article also mentions that the RAPIDS ecosystem
provides a set of GPU-accelerated machine learning algorithms that can be used to solve
various problems in data science. GPUs are ideal for machine learning because they have
enhanced mathematical computation capabilities. They can help train more models, larger
models, and more complex models in much shorter times than CPUs.

Processing the acquired data has become another challenge to overcome. The amount
of data generated globally per day is about 2.5 quintillion bytes (quintillion = 1030) [6] -
the above numbers will change significantly if the Internet of Things (IoT) spreads around
the world; for example, smart buildings are an example of IoT. "With big data, speed or
speed really matters. (...) In many real-world applications, we need to complete a task within
a certain time; otherwise, the processing results become less valuable or even worthless,
such as earthquake prediction, stock market prediction, agent-based autonomous exchange
systems (buying/selling), and so on” [4]. There is a great demand for equipment that can
process large data sets in a maximum of a few minutes; personal computers are not able
to achieve such results, which is why parallel programming is becoming more and more
popular, which can take place, for example, on many processors or graphics cards. Based on
the presented problems, this work was created. Processing large amounts of data in a short
time is a significant challenge today. The training of the network itself and its use require large
hardware resources. Therefore, it becomes realistic to use specialized computing units (e.g.
contained in graphics cards) to create extensive neural networks.

Task scheduling is an important aspect of cloud computing systems. Although there
are many approaches to improving task scheduling, this is still an open issue. A proposed
framework suggests [11] optimizing the utilization of cloud computing resources by using
machine learning techniques. The framework uses a dynamic scenario and considers different
parameters for scheduling purposes such as Makespan, QoS, energy consumption, execution
time, and load balancing. Incoming task requests are classified using supervised machine
learning techniques to select the best suitable algorithm for the task request rather than
randomly assigning the scheduling algorithm. The outcome of the proposed work leads to the
selection of the best task scheduling algorithm for the input task (request).

In this paper, we will show the Job Shop Scheduling Problem (JSSP), which is solved by
a Python program using three libraries: TensorFlow, PyTorch, and TensorRT.

The assumptions of this work are as follows.

– a neural network will solve an example of a scheduling problem in a shorter time than a
genetic algorithm;
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– the neural network, processing calculations on the graphics card, will predict large inputs
faster than the main processor;

– GPUs with higher capabilities (number of compute units, threads, and processor clock
speed) will not significantly affect the prediction time of small inputs compared to GPUs
with lower parameters.

2 Scheduling problem

The Job Shop Scheduling Problem (JSSP) is a well-known optimization problem in computer
science [2]. It is a variant of job scheduling. In this problem we consider a set of independent
𝑛∈ N jobs 𝐽 = {1, 2, . . . 𝑛}, and factory which has 𝑚∈ N machines 𝑀 = {1, 2, . . . 𝑚}. In
the specific variant, each job consists of a set of operations (tasks) 𝑂 = {1, 2, . . . , 𝑚} with
𝑝𝑚 processing times. There is a sequence of operations in job 𝑗 . The single 𝑜 𝑗𝑖 operation of
the job 𝑗 must be executed on the machine 𝑖. This assignment needs 𝑡 𝑗𝑖∈ N time units for
completion. We assume that operation is performed on machine without interruption during
execution. Operations can be run on 𝑚 machines in a different order. The main purpose of the
problem is to find the best solution, a schedule consisting of assigning all 𝑛 jobs to𝑚 machines
fulfilling the optimization criterion(s). Generally, we are trying to minimize the makespan –
the total length of the schedule (that is, when all the jobs have finished processing). We accept
only feasible solutions which must meet the following conditions:

– no operation for a job can be started until the previous operation for that job is completed;
precedence constraints must be respected,

– a machine can only work on one operation at a time,
– an operation, once started, must be executed completely.

This problem is one of the best known NP-hard problems. The size of the search space
(a number of schedules) Z is directly dependent on the number of jobs 𝑛 and a number of
machines 𝑚: Z =(𝑛!)𝑚. For 𝑛 = 2 jobs and 𝑚 = 4 machines we have (2!)4 = 16 possible
solutions (schedules), where an instance which consists 𝑛 = 5 jobs and 𝑚 = 5 machines
produces 207 360 000 solutions.

Suppose we have a simple job shop problem with three jobs and three machines. Each
operation is labeled by a pair of numbers (𝑚, 𝑝) where 𝑚 is the number of the machine the
operation must be processed on and 𝑝 is the processing time of the operation. The jobs are as
follows:

– job 0 = [(0, 3), (1, 2), (2, 2)]
– job 1 = [(0, 2), (2, 1), (1, 4)]
– job 2 = [(1, 4), (2, 3)]

In this example, job 0 has three tasks. The first operation (0, 3), must be processed on
machine 0 in 3 units of time. The second operation, (1, 2), must be processed on machine 1
in 2 units of time, and so on.

The goal is to schedule the tasks on the machines so as to minimize length of the schedule
– the time it takes for all the jobs to be completed. The objective of the JSSP is to find the
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correct permutation of all operations where the time is minimized. In this case we minimize
the makespan 𝐶max. Makespan is defined below:

𝐶max = 𝑚𝑎𝑥𝑖 (𝑂 (𝑆𝑖)) . (1)

Let us denote by 𝑆 as a schedule. By 𝑆𝑖 we denote the schedule on machine 𝑀 . The
completion time of the operations on machine 𝑀𝑚 in schedule 𝑆𝑖 is denoted by 𝑂 (𝑆𝑖). We
consider minimizing the maximum completion time on each machine 𝑀𝑚 across the system.

3 Solving the scheduling problem by neural networks

Traditionally, optimization problems involve finding the maximum or minimum value of a
function subject to certain constraints. Often for this optimization, metaheuristic algorithms
are used. There are many types of metaheuristics, such as evolutionary algorithms, swarm
intelligence, simulated annealing, tabu search, etc. In this approach, we should define the ob-
jective function and the constraints of the problem. The objective function is the function that
we want to maximize or minimize, and the constraints are the conditions that limit the feasible
solutions. The metaheuristic algorithm can generate a set of solutions that approximate the
optimal solution of the problem. We can compare the quality of the solutions using the ob-
jective function value and other metrics. Undoubtedly, metaheuristics have many advantages,
such as efficiency (can find an optimal or near-optimal solution in a reasonable amount of
time), flexibility (they are not problem specific), and ability to escape local minima. However,
there are some disadvantages: stochastic nature of the algorithm, need of parameter tuning,
or no guarantee of optimality. In such scheduling problems, we have one more disadvantage
of this approach. The time to calculate the reasonable solution can be unacceptable, when we
need a response from the system in a very short time. To solve this problem we can use trained
model of neural network, which could return the solution (schedule) in incomparably shorter
time. Our solution is based on this concept. To build the scheduler based on neural network,
we used Convolutional Neural Network (CNN). CNN is a type of feedforward neural network
that is widely used in image and video recognition, natural language processing, and other
applications. CNNs are designed to take input data in the form of images and process the data
through multiple layers, each of which applies a different set of filters to the data to extract
different features. The filters in each layer are optimized during training to recognize specific
patterns in the input data. CNNs are distinguished from other neural networks by their superior
performance with input of image, speech, or audio signals. They have three main types of
layers: Convolutional layer, Pooling layer, and Fully-connected (FC) layer. The convolutional
layer is the first layer of a convolutional network. Convolutional neural networks are variants
of multilayer perceptron, designed to emulate the behavior of a visual cortex. These models
mitigate the challenges posed by the MLP architecture by exploiting the strong spatially local
correlation present in natural images. The design of convolutional neural networks was in-
spired by the structure of the visual cortex (the part of the brain that receives visual stimuli).
It allows images to be processed by many cells in the cerebral cortex, which detect light in
areas that overlap the visual field [9]. The mechanism of convolution consists in transforming
fragments of a photo using a matrix (kernel) in order to extract information about its specific
features. Acquired information allows you to recognize or classify patterns. Compared to the
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general assumptions of deep networks, convolutional networks learn through local patterns,
not global ones - this allows for greater manipulation of the training and test set data - images
can be "twisted" and the model will correctly recognize the object in the photograph anyway,
because patterns in the convolutional network are resistant to shifts. There are several variants
of CNN architectures. However, the concept of all CNNs is similar. This architecture consists
of three types of layers: convolutional, pooling, and fully-connected (FC) layers. The typical
architecture of CNN is presented in Fig. 1
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Figure 1. Typical architecture of CNN. Source: Introduction to Convolutional Neural Networks. Stanford
University, 2018.

CNNs typically consist of several convolutional layers and subsampling layers. They are
also called pooling layers, followed by at least one fully connected layer [11]. The first two
layers, convolutional and pooling, perform feature extraction, while the third, fully connected
layer, maps the extracted features to a final result, such as classification [10]. The layers thus
connected form a multilayer perceptron whose input is tensors: they are matrices with more
dimensions than just height and width. Input tensors in the case of convolutional networks are
referred to as feature maps, and they are usually three-dimensional: dimensions specify such
quantities as height, width and number of colour channels of the examined images; we are
talking about shades of grey or RGB channels.

3.1 State of the art

Some papers describing this idea. In the paper [7] authors have proposed a framework to learn
to schedule a JSSP using a Graph Neural Network (GNN) and Reinforcement Learning (RL).
They formulated the scheduling process of JSSP as a sequential decision-making problem with
graph representation of the state to consider the structure of JSSP. The proposed framework
employs a GNN to learn node features that embed the spatial structure of the JSSP represented
as a graph (representation learning) and derive the optimum scheduling policy that maps
the embedded node features to the best scheduling action (policy learning). They used an
RL strategy to train these two modules end-to-end. The GNN scheduler, due to its superb
generalization capability, outperforms practically favored dispatching rules and RL-based
schedulers on various benchmark JSSP.

Another concept is proposed in [8]. The authors show new heuristic algorithms that
incorporate techniques from the machine learning field and scheduling theory to solve a hard
single machine scheduling problem. These heuristics transform an instance of a hard problem
into an instance of a simpler one solved to optimality. Computational experiments show that
they are competitive with state-of-the-art heuristics, notably in large instances. An alternative
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example is the use of machine learning and optimization for production rescheduling in
Industry 4.0 [5]. Scholars have proposed a rescheduling framework that integrates machine
learning techniques and optimization algorithms to find a trade-off between the frequency
of rescheduling and the growing accumulation of delays. They modeled a flexible job-shop
scheduling problem with sequence-dependent setup and limited dual resources (FJSP) inspired
by an industrial application and solved it through a hybrid metaheuristic approach. They also
trained a machine learning classification model to identify rescheduling patterns and compared
its rescheduling performance with periodical rescheduling approaches.

Deep learning is used to solve the scheduling problems. In the paper [13] the authors
propose a novel method to solve job-shop scheduling problems (JSSPs) using a deep neural
network. The paper introduces two main innovations:

– A two-dimensional convolution transformation (CTDT) that converts the irregular data
from the scheduling problem into regular data that can be processed by a convolutional
neural network (CNN).

– A hybrid deep neural network structure that combines a CNN and a fully connected
network to extract features and learn scheduling rules from the data.

The authors claim that the proposed method, called HDNNS, can achieve better perfor-
mance and generalization than existing methods, such as genetic algorithms, branch and bound
methods, and artificial neural networks.

4 Proposed solution

The idea of JSSP solving is based on the fact that we can collect examples of solutions to
the JSSP problem (e.g. generated by a metaheuristic algorithm) and then use them to learn a
neural network. At that point, the trained neural network will be able to independently generate
solutions to the JSSP problem given at the input. We use CNN as neural network.

The scheduling system is divided into two parts. The first part is responsible (see the left
side of Fig. 2) for learning CNN model. We generate the sub-problems using genetic algorithm
(GA) and then train the CNN model using data generated by GA. Afterwards, this model is
used to generate the solution for provided (real) JSSP (see right side of Fig. 2).

The data generated by GA should consist useful information to the scheduler used in
the execution phase. Due to the many variants scheduling instances, we need to provide the
following input parameters for GA:

– number of machines 𝑚,
– number of tasks 𝑛,
– minimum value of the task execution time on the machine in seconds 𝑡𝑖𝑚𝑒_𝑙𝑜𝑤,
– maximum value of the time it takes to execute a task on the machine in seconds 𝑡𝑖𝑚𝑒_ℎ𝑖𝑔ℎ.

On the basis of the above parameters, an initial population is defined. Due to the nature
of CNN, we need to create the corresponding input dataset of the neural network. GA output
(schedules) is converted to a form of matrices [13]:
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Figure 2. Learning (a) and execution (b) phases in the scheduling system. Source: own study.

– matrix 𝑝 with consisting of 𝑚 columns and 𝑛 rows, represents the processing time of the
task on each machine,

– matrix 𝑟 with consisting of 𝑚 columns and 𝑛 rows, is used to determine the order of the
task on each machine.

In the next step, we need to determine the parameters of the genetic algorithm: population
size, number of generations, probability of crossover, and mutation. As a result of using the
genetic algorithm, we obtain the following results:

– matrix ℎ for the start times of each operation on the machine,
– matrix 𝑒 of completion times of each operation on the machine,
– matrix 𝑥 containing the order in which operations are performed on each machine.

In the next stage, sub-problems are generated: each JSSP problem is divided into several
subproblems, described as operation processing features (see Tab. 1) and priority in the
machine. We create a list of subproblems consisting of 𝑚 × 𝑛 subproblems (a subproblem
is generated for each operation item on each machine). As a result of these operations, each
subproblem receives its own label and two matrices of features (the first one-dimensional,
the second has two dimensions). The feature matrices of all subproblems and the priority list
(one element from each subproblem) will be saved to the appropriate files – the matrixes will
be used as data for training the neural network, and the priority list will be a list of training
labels [13].

Each subproblem is generated on the basis of the following parameters:

– label – a number representing the order on the machine in the range ⟨0; 𝑛 − 1⟩;
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– list of task characteristics on a particular machine;
– two-dimensional matrix of task features on a specific machine. The list of task features is

presented in Tab. 1.

Table 1. List of the task features. Source: own study.

No. Variable
name

Variable description Equation

1 input001 The ratio of machine number to the number of all tasks 𝑖
𝑛(𝑁 ) , i ∈ M

2 input002 The ratio of processing time p jobs on the machine to the sum
of all job processing times on all machines

𝑝𝑖 𝑗∑
𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁

𝑝𝑖 𝑗

3 input003 The ratio of the sum of processing time 𝑝 for jobs 𝑖1 on machine
𝑗1 before it is executed to the sum of all processing times for
job 𝑗1

∑
𝑗 < 𝑗1

𝑝𝑖1 𝑗∑
𝑖 ∈ 𝑀

𝑝𝑖 𝑗1

4 input004 The ratio of the the sum of processing time 𝑝 for jobs 𝑖1 on
machine 𝑗1 after it is executed to the sum of all processing
times for job 𝑗1

∑
𝑗 ≥ 𝑗1

𝑝𝑖1 𝑗∑
𝑖 ∈ 𝑀

𝑝𝑖 𝑗1

5 input005 The ratio of the order 𝑘 on machine-1 to the number of all
machines

𝑘−1
𝑛(𝑀 ) ,k ∈ {-1, ... n(N) -1 }

6 input006 The ratio of the task number to the number of all tasks 𝑖
𝑛(𝑀 ) , i ∈ M

7 input007 The ratio of processing time 𝑝 job 𝑗 on machine 𝑖1 to processing
time of all jobs on machine 𝑖1

𝑝𝑖𝑖 𝑗∑
𝑗 ∈ 𝑀

𝑝𝑖1 𝑗

8 input008 The ratio of the processing time 𝑝 of job 𝑗1 to processing time
of all jobs on all machines

𝑝𝑖 𝑗1∑
𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁

𝑝𝑖 𝑗

9 input009 The ratio of the processing time of job 𝑗1 on all machines to
the processing time of all jobs on machine 𝑖1

∑
𝑖 ∈ 𝑀

𝑝𝑖 𝑗1∑
𝑗 ∈ 𝑀

𝑝𝑖1 𝑗

10 input010 The ratio of the processing time of job 𝑗1 on all machines to
the processing time of job 𝑗2 on all machines

∑
𝑖∈𝑀 𝑝𝑖 𝑗1∑
𝑖∈𝑀 𝑝𝑖 𝑗2

11 input011 The ratio of the 𝑘 − 1 position of the task on the machine in
order of priority to the number of total tasks 𝑗1𝑖1

𝑘𝑙 𝑗1𝑖11 −1
𝑛(𝑁 ) , n ∈ J

From this moment on, a two-dimensional feature matrix will be created from three auxil-
iary matrices (matrix ℎ, matrix 𝑒, matrix 𝑥). The first 𝑀1 auxiliary matrix is the sum matrix
of the job processing ratio on all machines and the sum of job processing on all machines -
these operations can be defined using the following formula:

𝑇𝑗1 , 𝑗2 =

∑
𝑖∈𝑀 𝑝𝑖 𝑗1∑
𝑖∈𝑀 𝑝𝑖 𝑗2

(2)

where 𝑗1, 𝑗2 ∈ set of tasks; M - collection of machines; 𝑝𝑖 𝑗 - the processing time of job 𝑗
on machine 𝑖.

This can be illustrated by the example of the problem of three tasks on three machines -
{𝑇𝑗0 , 𝑗0 , 𝑇𝑗0 , 𝑗1 , 𝑇𝑗0 , 𝑗2 ... 𝑇𝑗2 , 𝑗0 , 𝑇𝑗2 , 𝑗1 , 𝑇𝑗2 , 𝑗2}. The second 𝑀2 auxiliary matrix contains the
ratio of the processing time of a given task j on the given machine affected by the subproblem
to the sum of the task processing times j of each machine. The third 𝑀3 auxiliary matrix
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is a list of features of a task with a changed second dimension - we strive to obtain a one-
dimensional matrix. On the basis of the three auxiliary matrices, six matrices will be created,
written into a two-dimensional matrix of features:

– the first element - the input12 matrix - will be created by multiplying the auxiliary matrix
𝑀2 and the transposed matrix 𝑀2;

– the second element - the input13 matrix - will be created as a result of multiplying the
matrix 𝑀2 and the transposed matrix 𝑀1;

– the third element - the input14 matrix - will be created as a result of multiplying the
matrix 𝑀2 and the transposed matrix 𝑀3;

– the fourth element - the input15 matrix - will be formed by multiplying the matrix 𝑀1
and the transposed matrix 𝑀1;

– the fifth element - the input16 matrix - will be formed by multiplying the matrix 𝑀1 and
the transposed matrix 𝑀3;

– the sixth element - the input17 matrix - will be created by multiplying the matrix 𝑀3 and
the transposed matrix 𝑀3.

The list of features of the task and the six above elements of the two-dimensional matrix
will be pass in into the neural network as input data - a simplified scheme of the input data of
the neural network is presented in Fig. 3.
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Figure 3. Neural network input. Source: own study.

5 Machine learning on GPU

There are many libraries available for machine learning on GPUs. One popular library is
cuML, which is part of the RAPIDS ecosystem. According to a NVIDIA, cuML provides
a set of GPU-accelerated machine learning algorithms that can be used to solve various
problems in data science. NVIDIA also mentions that cuML integrates perfectly with cuDF,
the RAPIDS DataFrame framework for processing large amounts of data on an NVIDIA GPU.
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Another library that is widely used is scikit-learn. Scikit-learn is a popular Python library
for machine learning and provides a wide range of algorithms for classification, regression,
clustering, and dimensionality reduction. This library can be used with GPUs to accelerate
the training of machine learning models. Other libraries that are popular for machine learning
on GPUs include:

– TensorFlow: TensorFlow is an open source software library for dataflow and differentiable
programming on a range of tasks. It was developed by the Google Brain team and is widely
used for machine learning applications [14].

– PyTorch: PyTorch is an open source machine learning library based on the Torch library. It
was developed by Facebook’s AI Research lab and is known for its dynamic computational
graph and ease of use [15].

– MXNet: MXNet is an open source deep learning framework that supports multiple
programming languages, including Python, R, Julia, Scala, and C++. It was developed by
Apache and is known for its scalability and efficiency [16].

– TensorRT is an SDK for high-performance deep learning inference. It includes a deep
learning inference optimizer and runtime that delivers low latency and high throughput for
inference applications. TensorRT-based applications perform up to 36X faster than CPU-
only platforms during inference, allowing you to optimize neural network models trained
on all major frameworks, calibrate for lower precision with high accuracy, and deploy to
hyperscale data centers, embedded platforms, or automotive product platforms. TensorRT
is integrated with PyTorch and TensorFlow so you can achieve 6X faster inference with
a single line of code. If you are performing deep learning training in a proprietary or
custom framework, you can use the TensorRT C++ API to import and accelerate your
models [17].

6 Experimental results

6.1 Implementation details

The scheduling system was implemented in Python language with the use of three libraries:
TensorFlow, PyTorch, and TensorRT. The experiments were carried out on two configurations
of computers equipped with GPUs (see Tab. 2).

Data for training the neural network will be generated on the results of the genetic
algorithm. To achieve the most optimal results of the network model inference, the training
data must be of the best quality. In this section, we set an optimal parameters of GA, which
will be used in subsequent studies concerning this work:

– number of generations: 200,
– population size: 80,
– probability of crossing: 0.6,
– probability of mutation: 0.05,
– parameter, correcting the number of genes, subjected to mutation: 0.05.

For this experiment we used a JSSP instance with 𝑛=10 tasks,𝑚=10 machines, 𝑡𝑖𝑚𝑒_𝑙𝑜𝑤=10,
and 𝑡𝑖𝑚𝑒_ℎ𝑖𝑔ℎ=50.
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Table 2. Specification of the computer configurations. Source: own study.

Configuration
name

Processor
model

CPU
clock
speed
[GHz]

Number
of CPU
cores

Number
of CPU
threads

Operating
memory

GPU Dedicated
GPU
memory
[GB]

Operating
system

CF_3090 Intel
Xeon
Gold
6242

2.80 16 32 64 NVIDIA
GeForce
RTX
3090

24 Windows
10 Pro,
Ubuntu
18.04

CF_1050 Intel Core
i5-4670

3.40 4 4 12 NVIDIA
GeForce
1050 Ti

4 Windows
10 Pro,
Ubuntu
18.04

6.2 Regular experiments

After that, we used JSSP test instances for regular experiments. These instances contain
various number of jobs (from 4 to 14 jobs) and number of machines (from 4 to 14 machines).
The instances are presented in Tab. 3.

Table 3. JSSP test instances used for regular experiments. Source: own study.

No. JSSP instance name Number
of ma-
chines 𝑚

Number
of tasks 𝑛

Minimum process-
ing time on the ma-
chine 𝑡𝑖𝑚𝑒_𝑙𝑜𝑤

Maximum process-
ing time on the ma-
chine 𝑡𝑖𝑚𝑒_ℎ𝑖𝑔ℎ

1. SP_4_6 4 6 10 50
2. SP_6_4 6 4 10 50
3. SP_6_8 6 8 10 50
4. SP_8_6 8 6 10 50
5. SP_8_10 8 10 10 50
6. SP_10_8 10 8 10 50
7. SP_10_12 10 12 10 50
8. SP_12_10 12 10 10 50
9. SP_12_14 12 14 10 50
10. SP_14_12 14 12 10 50

Tab. 4 presents the results of training and testing of CNN in TensorFlow and PyTorch
libraries. Each model was trained with a number of epochs equal to 20 and a batch size of 64
in each epoch. Each model has been trained for a certain number of samples in one epoch - the
number of samples depends on the number of machines and the number of tasks in JSSP. As
we can see the times of training and testing for TensorFlow and PyTorch are much different.
TensorFlow needed twice as much time as PyTorch for this process.

After that, we researched prediction times using two GPU configuration platforms imple-
mented in TensorRT, TensorFlow, and PyTorch libraries. The results are presented in Tab. 5
and Tab. 6.
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Table 4. Results of training and testing of neural network models in the TensorFlow and PyTorch library.
Source: own study.

Training
dataset
name

Test
dataset
name

Number of
samples in
training per
epoch

TensorFlow PyTorch
Total train-
ing and test
time [s]

Trained
model file-
size [kB]

Total train-
ing and test
time [s]

Trained
model file-
size [kB]

Ztr_4_6 Zts_4_6 27 43.08 122 7.32 5503
Ztr_6_4 Zts_6_4 27 17.14 47 3.55 2095
Ztr_6_8 Zts_6_8 53 224.48 321 46.18 13598
Ztr_8_6 Zts_8_6 53 87.79 122 18.72 5503
Ztr_8_10 Zts_8_10 88 743.43 739 357.08 29643
Ztr_10_8 Zts_10_8 88 353.15 321 114.68 13598
Ztr_10_12 Zts_10_12 132 2270.43 1497 1188.68 57801
Ztr_12_10 Zts_12_10 132 1099.27 739 519.04 29643
Ztr_12_14 Zts_12_14 184 5915.52 2744 3993.7 103134
Ztr_14_12 Zts_14_12 184 3127.83 1497 1781.18 57801

Table 5. Results obtained in GPU configuration CF_3090 (NVIDIA GeForce RTX 3090). Source: own
study.

JSSP
instance
name

Average
makespan
obtained by
GA [ms]

TensorRT TensorFlow PyTorch
Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

SP_4_6 237.11 561.34 0.11 551.7 0.21 446.98 0.06
SP_6_4 242.54 275.93 0.11 272.2 0.17 575.56 0.01
SP_6_8 353.52 419.95 0.11 427.42 0.19 874.61 0.02
SP_8_6 354.65 408.96 0.11 408.64 0.19 1138.35 0.01
SP_8_10 489.75 534.85 0.11 544.11 0.22 1817.25 0.03
SP_10_8 489.65 544.7 0.11 532.44 0.20 1844.77 0.02
SP_10_12 648.2 704.82 0.11 699.03 0.31 1039.18 0.06
SP_12_10 645.49 700.58 0.11 709.14 0.24 2758.43 0.04
SP_12_14 820.01 853.86 0.12 840.17 0.46 3849.3 0.11
SP_14_12 813.52 836.04 0.11 839.23 0.37 3965.91 0.07
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The average prediction time for the first configuration (see Tab. 5) are the best for PyTorch.
However, the average makespan obtained by this model is very high, contrary to the other
libraries. TensorRT gives the best prediction taking into account the average makespan.

Table 6. Results obtained in GPU configuration CF_1050 (NVIDIA GeForce 1050 Ti). Source: own
study.

JSSP
instance
name

Average
makespan
obtained by
GA [ms]

TensorRT TensorFlow PyTorch
Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

Average
makespan
obtained
by CNN
[s]

Average
prediction
time [s]

SP_4_6 233.30 562.46 0.005 551.27 0.19 442.33 0.03
SP_6_4 245.61 275.97 0.008 274.50 0.16 559.5 0.01
SP_6_8 358.53 417.83 0.008 426.83 0.23 848.68 0.03
SP_8_6 357.19 415.87 0.006 416.23 0.23 1107.87 0.01
SP_8_10 495.98 550.71 0.016 553.65 0.26 1827.5 0.06
SP_10_8 490.35 545.43 0.012 544.34 0.24 1862.42 0.04
SP_10_12 655.07 698.48 0.051 704.68 0.36 1003.7 0.14
SP_12_10 655.53 696.62 0.034 714.77 0.33 2798.59 0.09
SP_12_14 812.03 865.17 0.101 854.27 0.53 3905.15 0.25
SP_14_12 821.23 835.19 0.067 835.12 0.42 3929.63 0.17

We also researched these models on the second platform with the budget components. The
results are similar to those obtained by the previous platform. PyTorch on this platform is also
the worst when we get the average values of makespan. Surprisingly, the average prediction
times for TensorRT are better than those of a more powerful platform (compare the values on
the Tab. 5 and Tab. 6). Fig. 4 concludes the differences between the average prediction times
obtained on GPU for the TensorFlow, PyTorch, and TensorRT libraries.

Similarly, we compared the average prediction times obtained by the CPU and GPU
environment. Fig 5. presents the values obtained in PyTorch library, whereas Fig. 6. shows
the values for TensorFlow.

The correlation between values is very high. As we can see, for more complex JSSP
instances, average prediction times are higher for CPU platform.

Finally, we show the differences between the results obtained by GA and CNN. Fig. 7
shows the average values of the processing times for GA and CNN based on the TensorFlow
library. Overall, these results suggest that CNN can find the solution in shorter time than GA.
It is not surprising, because the trained model of neural network can give the response very
shortly, opposite to the other optimization methods.

7 Conclusions

CNN is one of the many known architectures of neural networks. Our task was focused on the
implementation of CNN in the scheduling aspect. The task was finished with the success. One
of disadvantages of this method is the time to learn the neural network. However, one time
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Figure 4. Average prediction times of neural networks on GPU for TensorFlow, PyTorch and TensorRT
libraries. Source: own study.

Figure 5. Average prediction times of neural networks in PyTorch library for CPU and GPU. Source:
own study.
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Figure 6. Average prediction times of neural networks in TensorFlow library for CPU and GPU. Source:
own study.

Figure 7. Average processing times for GA and CNN based on TensorFlow. Source: own study.
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trained model can be useful for many scheduling problems. The results are promising. This
model can be improved. We can use hybrid metaheuristics as input of the neural network. It
could give more optimal results on the output of the neural network.
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