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Abstract. We devote this paper to a special case of Graph Spectral Clustering of graphs
with identical distances between nodes. This study is motivated by the special theorem
presented by Watanabe which claims that given all derivable attributes are taken into
account, all distinct objects are at the same distance. As the multi-view clustering
becomes popular, the mentioned Watanabe theorem may imply serious problems for
recovering the intrinsic structure of the collection of objects. We show that Graph
Spectral Clustering should not be affected in the most favourable case that is block
structure of similarity matrix in theory, but in practice the underlying 𝑘-means algorithm
introduces up to 20% error rate in assignment of elements to clusters.
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1 Introduction

Watanabe [30,31] presented in 1969 and reiterated in 1987 an interesting theorem, called Ugly
Duckling Theorem. We provide here a bit elaborated version.
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Theorem 1 Assume that a set of binary attributes 𝐴1, . . . , 𝐴𝑛 are relevant for the description
of objects 𝑂𝑘 in some domain. Assume that if two attributes 𝐴𝑖 , 𝐴 𝑗 are relevant, then their
logical conjunction 𝐴𝑖 ∧ 𝐴 𝑗 , disjunction 𝐴𝑖 ∨ 𝐴 𝑗 and negation ¬𝐴 𝑗 are also relevant. Assume
further that for two objects 𝑂𝑘 , 𝑂𝑙 their similarity 𝑠𝑖𝑚(𝑂𝑘 , 𝑂𝑙) is measured as the share of
relevant attributes that have the same value for both objects. Then for distinct objects (ones
with at least one not agreeing value for attributes 𝐴1, . . . , 𝐴𝑛), the similarity is equal 0.5.

This theorem has a multitude of implications in the domain of data clustering. In [15] it has been
shown that under these circumstances the Fisher’s Flexible Clustering algorithm COBBWEB
[9] produces a flat hierarchy, and under careful selection of a subset of relevant attributes any
hierarchical clustering can be obtained (see also [19]). In [17], a further analysis showed that
attributes both weakly and strongly related with other attributes have deteriorating impact
onto the overall classification. Proper construction of derived attributes as well as selection
of scaling of individual attributes strongly influences the obtained hierarchical clustering.
[22] shows that the Ugly Duckling effect studied by Watanabe affects both clustering and
metaclustering. In [16], it is shown that also consensus between document similarity measures
([7,27]) is also affected by the phenomenon. We observe in recent years growing interest in
manipulation of document similarity, [36,37,8,32] which may introduce the effects of Ugly
Duckling to the results of clustering.

The Ugly Duckling problem itself attracted for years the attention of researchers in various
theoretical and practical domains, just see papers [28] (mathematical theories), [2] (biology),
[3,4] (philosophy), [26] (psychology), [10] (business), [13] (cellular automata simulation),
[11] (modern GPT problems), [14] (recommender systems), and many more.

These and other observations prompted us to study the impact of Ugly Duckling effect
on the results of the now quite popular Graph Spectral Clustering (GSC) [34,23,24,5]. This
is especially important in the light of new approaches to spectral clustering, the aforemen-
tioned multi-view approaches [29,20] that manipulate the similarity matrices based on derived
attributes.

2 Graph Spectral Clustering

Spectral Clustering methods draw much attention over many years due to their capability
to identify clusters with non-typical shapes [35,34,21] and constantly attract researchers to
improve their performance [12,1,18].

Spectral clustering methods are deemed to be a relaxation of cut based graph clustering
methods. They start with transforming a similarity matrix to a graph Laplacian, for which
lowest eigenvectors are taken as input to a conventional clustering method. Let 𝑆 be a similarity
matrix between pairs of items (e.g. documents). It induces a graph whose nodes correspond
to the items. A combinatorial Laplacian 𝐿 corresponding to this matrix is defined as

𝐿 = 𝐷 − 𝑆, (1)

where 𝐷 is the diagonal matrix with 𝑑 𝑗 𝑗 =
∑𝑛

𝑘=1 𝑠 𝑗𝑘 for each 𝑗 ∈ [𝑛]. A normalized Laplacian
L of the graph represented by 𝑆 is defined as

L = 𝐷−1/2𝐿𝐷−1/2 = 𝐼 − 𝐷−1/2𝑆𝐷−1/2. (2)
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If one now wants to cluster into 𝑘 clusters, one takes 𝑘 eigenvectors of one of the above
Laplacians, related to 𝑘 lowest eigenvalues of the Laplacian as representation of the objects
(documents) and clusters with this representation using 𝑘-means [21]. If you want to cluster
just into two clusters, you take the so-called Fiedler vector, that is the vector associated with
the second lowest eigenvalue. Then the elements associated with positive elements of the
Fiedler vector will belong to one cluster, and the elements associated with negative elements
of the Fiedler vector will belong to the second one. The tricky issue is what to do if the vector
elements are equal zero. For details see e.g. [34].

3 Proof of Watanabe’s Ugly Duckling Theorem

Proof (Proof of Theorem 1 ). The proof is quite simplistic, but we will present it for complete-
ness of presentation. Let two objects 𝑂𝑘 , 𝑂𝑙 have attribute values 𝐴1 = 𝑎𝑘1, . . . , 𝐴𝑛 = 𝑎𝑘𝑛
and 𝐴1 = 𝑎𝑙2, . . . , 𝐴𝑛 = 𝑎𝑙𝑛 resp. Recall that all of the relevant attributes can be constructed
as follows: Create all attributes of the form 𝐵𝑝 = ∗𝐴1∧, . . . ,∧ ∗ 𝐴𝑛 where * stands for either
nothing or ¬. p would range from 1 to 2𝑛. Let 𝐵𝑘 be the expression true for 𝑂𝑘 and 𝐵𝑙 the
expression true for 𝑂𝑙 . Note that there is only one expression 𝐵𝑝 true for each of them and
they are different. All other are false for both objects.

Let B be the set of all 𝐵𝑝 . 2B be the set of all subsets of B. C be the set of all expressions 𝑐
derived as follows: for any set 𝑏 ∈ 2B let 𝑐 be the disjunction ∨ of all elements from 𝑏. Then
the complete set of all derived attributes of 𝐴1, . . . , 𝐴𝑛 is the set C.

Consider a subset C0 of C of expressions containing neither 𝐵𝑘 nor 𝐵𝑙 , a subset C𝑘 of C
of expressions containing 𝐵𝑘 but not 𝐵𝑙 , a subset C𝑙 of C of expressions not containing 𝐵𝑘

but containing 𝐵𝑙 , a subset C2 of C of expressions containing both 𝐵𝑘 and 𝐵𝑙 as elementary
conjunctions. It is easily seen that C0, C𝑘 , C𝑙 , C2 are of the same cardinality.

Obviously, both objects have the same value for attributes from C0 (false) and C2 (true),
but different for C𝑘 and C𝑙 . Due to mentioned cardinalities 𝑠𝑖𝑚(𝑂𝑘 , 𝑂𝑙) = 0.5. □

4 GSC Ugly Duckling Issues for Combinatorial Laplacians

For a set of 𝑚 objects, let us consider a similarity matrix 𝑆0.5,𝑚 with values 0.5 at all off-
diagonal elements. In a combinatorial Laplacian 𝐿0.5,𝑚, all off-diagonal elements will be -0.5,
and all diagonal equal 0.5(𝑚 − 1).

Theorem 2 The system of eigenvectors of the combinatorial Laplacian 𝐿0.5,𝑚 can be obtained
as follows. One eigenvalue, 𝜆1, of 𝐿 will be equal 0, with eigenvector v1 = (−1, . . . ,−1)𝑇 .
Other eigenvectors 𝑖 = 2, . . . , 𝑚 will have the form: 𝑣𝑖, 𝑗 = −1 for 𝑗 ≥ 𝑖, 𝑣𝑖, 𝑗 = 0 for 𝑗 ≤ 𝑖 − 2,
𝑣𝑖,𝑖−1 = 𝑚 − (𝑖 − 1). Their corresponding eigenvalues are all equal 𝑚/2.

Proof. The eigenvalue 𝜆1 and eigenvector v1 are common for all combinatorial Laplacians.
Consider the eigenvector vi for 𝑖 = 2, . . . , 𝑚 and its multiplication with the 𝑖 − 1𝑠𝑡 row of

𝐿0.5,𝑚. 𝑣𝑖,𝑖−1 · 𝐿0,5;𝑖−1,𝑖−1 = (𝑚 − (𝑖 − 1)) · (𝑚 − 1)/2. For 𝑗 ≥ 𝑖 we have 𝑣𝑖, 𝑗 · 𝐿0,5;𝑖−1,𝑖−1 =

−1 · (−0.5) = 0.5. For 𝑗 ≤ 𝑖 we have 𝑣𝑖, 𝑗 = 0, so it is not contributing. So in all 𝐿0,5;𝑖−1,∗ =
(𝑚 − (𝑖 − 1)) · (𝑚 − 1)/2 + (𝑚 − 𝑖 + 1) · 0.5 = (𝑚 − (𝑖 − 1)) · 𝑚/2 = 𝑚/2 · 𝑣𝑖,𝑖−1.
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Consider the eigenvector vi for 𝑖 = 2, . . . , 𝑚 and its multiplication with the 𝑗 𝑡ℎ row ( 𝑗 ≥ 𝑖)
of 𝐿0.5,𝑚. 𝑣𝑖,𝑖−1 · 𝐿0,5; 𝑗 ,𝑖−1 = (𝑚 − (𝑖 − 1)) · (−1/2). 𝑣𝑖, 𝑗 · 𝐿0,5; 𝑗 , 𝑗 = (−1) · (𝑚 − 1)/2. For
𝑘 < 𝑖 − 1 𝑣𝑖,𝑘 = 0, so no contribution. For 𝑘 ≥ 𝑖, 𝑘 ≠ 𝑗 𝑣𝑖,𝑘 · 𝐿0,5; 𝑗 ,𝑘 = (−1) · (−1/2). So in all
(𝑚− (𝑖−1)) · (−1/2) + (−1) · (𝑚−1)/2+ (𝑚− 𝑖) ·1/2 = (−1/2) · (𝑚− 𝑖+1+𝑚−1−𝑚+ 𝑖) =
−𝑚/2 = 𝑚/2 · 𝑣𝑖, 𝑗 .

Consider the eigenvector vi for 𝑖 = 2, . . . , 𝑚 and its multiplication with the 𝑗 𝑡ℎ row
( 𝑗 ≤ 𝑖 − 2) of 𝐿0.5,𝑚. 𝑣𝑖,𝑖−1 · 𝐿0,5; 𝑗 ,𝑖−1 = (𝑚 − (𝑖 − 1)) · (−1/2). For 𝑘 < 𝑖 − 1 𝑣𝑖,𝑘 = 0, so
no contribution. For 𝑘 ≥ 𝑖 𝑣𝑖,𝑘 · 𝐿0,5; 𝑗 ,𝑘 = (−1) · (−1/2). So in all (𝑚 − (𝑖 − 1)) · (−1/2) +
(𝑚 − 𝑖 + 1) · 1/2 = (−1/2) · (𝑚 − 𝑖 + 1 − 𝑚 + 𝑖 − 1) = 0 = 𝑚/2 · 𝑣𝑖, 𝑗 . So we see that vi is an
eigenvector with the eigenvalue equal 𝑚/2.

We have still to demonstrate that this is a system, that is there are 𝑚 distinct eigenvectors
(which is obvious) and that they are orthogonal.

The orthogonality of vi for 𝑖 ≥ 2 to v1 is obvious because the sum of elements of vi is
equal zero.

Consider vi, vj for 𝑖 > 𝑗 ≥ 2. vi
𝑇vj = 0 because all elements of vi with indices below 𝑖 − 1

are equal to zero and all elements of both vi, vj with indices equal or bigger than 𝑖 − 1 are
equal to minus one (thus their product sums up to 𝑚 − (𝑖 − 1)), while 𝑣𝑖,𝑖−1 = 𝑚 − (𝑖 − 1) and
𝑣 𝑗 ,𝑖−1 = −1 (with product −(𝑚 − (𝑖 − 1))). □

Note that any vector v with sum of elements equal to zero is an eigenvalue of 𝐿0.5,𝑚 (see
Theorem 5). This means, according to Fiedler’s rule, clustering into two clusters can yield
any result. This is obvious if all similarities are the same.

By the way the fact that there are multiple possible eigenvector systems if some eigenvalues
are identical was already pointed at by us in [33] that if the eigenvalues are equal to each other
then clustering should always take into account all the eigenvectors with the same eigenvalue.

For a set of 𝑚 objects, let us consider a generalization for document similarity equal to
𝑝, and not just 0.5. Then we obtain similarity matrix 𝑆𝑝,𝑚 with values 𝑝 at all off-diagonal
elements. In a combinatorial Laplacian 𝐿𝑝,𝑚, all off-diagonal elements will be -p, and all
diagonal equal 𝑝(𝑚 − 1).

Theorem 3 The system of eigenvectors of the combinatorial Laplacian 𝐿𝑝,𝑚 can be obtained
as follows. One eigenvalue, 𝜆1, of 𝐿 will be equal 0, with eigenvector v1 = (−1, . . . ,−1)𝑇 .
Other eigenvectors 𝑖 = 2, . . . , 𝑚 will have the form: 𝑣𝑖, 𝑗 = −1 for 𝑗 ≥ 𝑖, 𝑣𝑖, 𝑗 = 0 for 𝑗 ≤ 𝑖 − 2,
𝑣𝑖,𝑖−1 = 𝑚 − (𝑖 − 1). Their corresponding eigenvalues are all equal 𝑚𝑝.

Proof. Apparently, 𝐿𝑝,𝑚 = 2𝑝𝐿0.5,𝑚. Therefore, for an non-univalued eigenvector v(0.5) for
𝐿0.5,𝑚

𝐿𝑝,𝑚v(0.5) = 2𝑝𝐿0.5,𝑚v(0.5) = 2𝑝𝑚/2v(0.5) = 𝑝𝑚v(0.5)

that is each such vector is also an eigenvector of 𝐿𝑝,𝑚 □

5 GSC Ugly Duckling Issues for Normalized Laplacian

For a similarity matrix 𝑆𝑝,𝑚, its diagonal matrix 𝐷 𝑝,𝑚 will have all diagonal elements equal
to 𝑝(𝑚 − 1). Hence

L𝑝,𝑚 = 𝐷
−1/2
𝑝,𝑚 𝐿𝑝,𝑚𝐷

−1/2
𝑝,𝑚 = 𝐷−1

𝑝,𝑚𝐿𝑝,𝑚 = 𝐿𝑝,𝑚/(𝑝(𝑚 − 1))
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This means that: In a normalized Laplacian L𝑝,𝑚, all off-diagonal elements will be -1/(m-1),
and all diagonal equal 1. So L𝑝,𝑚 does not actually depend on 𝑝.

Therefore

Theorem 4 The system of eigenvectors of the normalized Laplacian L𝑝,𝑚 can be obtained
as follows. One eigenvalue, 𝜆1, of L will be equal 0, with eigenvector v1 = (−1, . . . ,−1)𝑇 .
Other eigenvectors 𝑖 = 2, . . . , 𝑚 will have the form: 𝑣𝑖, 𝑗 = −1 for 𝑗 ≥ 𝑖, 𝑣𝑖, 𝑗 = 0 for 𝑗 ≤ 𝑖 − 2,
𝑣𝑖,𝑖−1 = 𝑚 − (𝑖 − 1). Their corresponding eigenvalues are all equal 𝑚/(𝑚 − 1).

Proof. For an non-univalued eigenvector v(p) for 𝐿𝑝,𝑚

L𝑝,𝑚v(p) = 𝐿𝑝,𝑚/(𝑝(𝑚 − 1))v(p) = (𝑝𝑚)/(𝑝(𝑚 − 1))v(p) = 𝑚/(𝑚 − 1)v(p)

□

We claim that

Theorem 5 Any non-zero vector v with the sum of elements
∑

v = 0 is an eigenvector of
𝐿𝑝,𝑚 and L𝑝,𝑚

Proof. In any combinatorial Laplacian, in each row, the sum of off-diagonal elements is equal
to negated diagonal element. The off-diagonal elements in 𝐿𝑝,𝑚 are all equal 𝑝, and the
diagonal element is equal to (𝑚 − 1)𝑝. Consider the 𝑖𝑡ℎ element 𝑣𝑖 of v. Let us multiply the
𝑖𝑡ℎ row of 𝐿𝑝,𝑚. The sum of off-row element products amounts to −(−𝑣𝑖)𝑝 and that of 𝑖𝑡ℎ
element equals 𝑣𝑖 (𝑚 − 1)𝑝. So the scalar product equals 𝑣𝑖𝑚𝑝. As this holds for each row,
𝐿𝑝,𝑚v = 𝑚𝑝v which was to be demonstrated.

In the special case of L𝑝,𝑚, also the sum of off-diagonal elements is equal to negated
diagonal element. So we conclude the same as in combinatorial Laplacian. □

6 Laplacians of blockdiagonal relations

So far we have considered the case when all attributes participate in the Ugly Duckling effect.
For some reasons, however, one can introduce some restrictions on generalizations so that it
applies for blocks of data only. In this case, the similarity matrix would have the form of a
blockdiagonal matrix.

Assume now that we have blockdiagonal similarity matrix of the form

𝑆𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 =

[
𝑆𝑝1 ,𝑚1 0

0 𝑆𝑝2 ,𝑚2

]
representing similarities between documents in sets 𝐶1, 𝐶2 (𝑆𝑝1 ,𝑚1 for 𝐶1 blockdiagonal and
𝑆𝑝2 ,𝑚2 for 𝐶2 blockdiagonal).

It is well-known that the eigenvalues of a blockdiagonal matrix are the eigenvalues of the
individual blocks, and eigenvectors are the eigenvectors extended with zeros appropriately. So
consider now the combinatorial Laplacian 𝐿𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 of 𝑆𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 . It will have the form

𝐿𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 =

[
𝐿𝑝1 ,𝑚1 0

0 𝐿𝑝2 ,𝑚2

]
Therefore
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Theorem 6 The system of eigenvectors of the combinatorial Laplacian 𝐿𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 can be
obtained as follows. Two eigenvalues, 𝜆1,1, 𝜆1,2, of 𝐿 will be equal 0, with eigenvectors
v1,1 = (−1, . . . ,−1, 0, . . . , 0)𝑇 . v1,2 = (0, . . . , 0,−1, . . . ,−1)𝑇 . Other eigenvalues are equal
to 𝑚1𝑝1 (𝑚1 − 1 of them) and 𝑚2𝑝2 (𝑚2 − 1 of them). The corresponding eigenvectors
𝑖1 = 2, . . . , 𝑚1 𝑖2 = 2, . . . , 𝑚2 will have the form: 𝑣1,𝑖1 , 𝑗 = −1 for 𝑗 ≥ 𝑖1, 𝑣1,𝑖1 , 𝑗 = 0 for
𝑗 ≤ 𝑖1 − 2 and 𝑗 ≥ 𝑚1, 𝑣1,𝑖1 ,𝑖1−1 = 𝑚1 − (𝑖1 − 1). and 𝑣2,𝑖2 , 𝑗 = −1 for 𝑗 ≥ 𝑖2 + 𝑚1, 𝑣2,𝑖2 , 𝑗 = 0
for 𝑗 ≤ 𝑖2 − 2 + 𝑚1 𝑣2,𝑖2 ,𝑖2−1 = 𝑚2 − (𝑖2 − 1).

If we apply Fiedler’s vector as a criterion for separating clusters now, we have a tricky
task to distinguishing where elements with zero values belong to.

Consider now the normalized Laplacian L𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 of 𝑆𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 . It will have the form

L𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 =

[
L𝑝1 ,𝑚1 0

0 L𝑝2 ,𝑚2

]
Therefore

Theorem 7 The system of eigenvectors of the normalized Laplacian L𝑝1 , 𝑝2 ,𝑚1 ,𝑚2 can be
obtained as follows. Two eigenvalues, 𝜆1,1, 𝜆1,2, of L will be equal 0, with eigenvectors
v1,1 = (−1, . . . ,−1, 0, . . . , 0)𝑇 . v1,2 = (0, . . . , 0,−1, . . . ,−1)𝑇 . Other eigenvalues are equal
to 𝑚1/(𝑚1 − 1) (𝑚1 − 1 of them) and 𝑚2/(𝑚2 − 1) (𝑚2 − 1 of them). The corresponding
eigenvectors 𝑖1 = 2, . . . , 𝑚1 𝑖2 = 2, . . . , 𝑚2 will have the form: 𝑣1,𝑖1 , 𝑗 = −1 for 𝑗 ≥ 𝑖1,
𝑣1,𝑖1 , 𝑗 = 0 for 𝑗 ≤ 𝑖1 −2 and 𝑗 ≥ 𝑚1, 𝑣1,𝑖1 ,𝑖1−1 = 𝑚1 − (𝑖1 −1). and 𝑣2,𝑖2 , 𝑗 = −1 for 𝑗 ≥ 𝑖2 +𝑚1,
𝑣2,𝑖2 , 𝑗 = 0 for 𝑗 ≤ 𝑖2 − 2 + 𝑚1 𝑣2,𝑖2 ,𝑖2−1 = 𝑚2 − (𝑖2 − 1).

If we apply Fiedler’s vector as a criterion for separating clusters, we have again a tricky
task to distinguishing where elements with zero values belong to.

The analytical determination of eigenvectors and eigenvalues are easily extended to 𝑘 > 2
blocks in the diagonal structure, that is to 𝑆p,m and its Laplacians 𝐿p,m and Lp,m, where m is
a vector of block cardinalities and p is the vector of similarities within each block.

Then, however, the identifying of clusters requires application of 𝑘-means to 𝑘 lowest
eigenvalue eigenvectors as representation of the elements [21].

In theory, the lowest value eigenvectors (with eigenvalue equal to zero) mentioned in the
above theorems are sufficient to identify uniquely the blocks.

7 Impact of noise

Let us consider the impact of fixed noise - adding the same fixed value 𝑝 [𝑛] to all elements
of similarity matrix. This situation can be represented as a sum of two similarity matrices
𝑆p,m + 𝑆𝑝 [𝑛] ,

∑
m It is easily seen that also the combinatorial Laplacian can be represented

analogously as 𝐿p,m + 𝐿𝑝 [𝑛] ,
∑

m It does not, however, apply to normalized Laplacian.
So consider the combinatorial Laplacian 𝐿p,m + 𝐿𝑝 [𝑛] ,

∑
m. Consider a vector v consisting

of 𝑐𝑎𝑟𝑑 (m) blocks each of length𝑚 𝑗 with entries equal 1/𝑚𝑖 for the 𝑖 block and 1/(∑m−𝑚𝑖)
for any other block 𝑗 ≠ 𝑖. Clearly

∑
v = 0, so according to Theorem 5, it is an eigenvector

of 𝐿𝑝 [𝑛] ,
∑

m with eigenvalue 𝑝 [𝑛] (∑m). But also due to its construction, it is an eigenvector
of 𝐿p,m with eigenvalue equal to zero. So in all, v is an eigenvector of 𝐿p,m + 𝐿𝑝 [𝑛] ,

∑
m with
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eigenvalue 𝑝 [𝑛] (∑m). Though the vectors of this form do not constitute the set of orthogonal
eigenvectors, they are all with the second lowest eigenvalue so that an orthogonal system of the
space spanned by them can be found and used to clearly identify the blocks with a clustering
algorithm.

8 Experimental evaluation

We investigated experimentally the capability of 𝑘-means algorithm used within GSC to
properly identify the blocks in datasets with blockdiagonal similarity matrices in the category
of Ugly Duckling similarity matrices 𝑆p,m.

Figure 1. Percentage of correct clustering - combinatorial (to the left) and normalized (to the right)
Laplacian based GSC for the block structured similarity matrices with block similarities p= (0.4,
0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7) and proportions of block cardinalities
m[𝑔𝑟𝑜𝑢𝑛𝑑 ]=(3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4)

We used the vector p listed in Fig. 1. As 𝑘-means algorithm is sensitive to unbalanced
classes, we used block size equal to 𝑗 ·m[𝑔𝑟𝑜𝑢𝑛𝑑 ] for 𝑗 = 1, . . . , 30, where m[𝑔𝑟𝑜𝑢𝑛𝑑 ] is given
in caption of Fig. 1. Fig. 1 shows how successful the algorithm was in finding proper block
structure for the various implied sample sizes. It shows the percentage of correctly clustered
elements of the sample (the blue line). The red line shows the percentage of undecided sample
elements which turned out to be equal zero everywhere1. Both combinatorial and normalized
Laplacian based GSC had success rate between 80 and 100 %.

Next we performed similar experiments, but by adding noise. We did not use, however,
fixed noise, discussed in Section 7, but rather a random noise, uniformly sampled for each

1Undecided cases are frequent if we would use Fiedler vector based decision making, which applies
to two clusters only
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Figure 2. Same as in Fig. 1 with addition of noise 0.001.

Figure 3. Same as in Fig. 1 with addition of noise 0.01.
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Figure 4. Same as in Fig. 1 with addition of noise 0.1.

similarity cell from the range 0 to 0.001 (Fig. 2), from the range 0 to 0.01 (Fig. 3), and from
the range 0 to 0.1 (Fig. 4),

As could be expected from Section 7, the noise does not deteriorate clustering effec-
tiveness, and in some cases even improves the clustering performance (by introducing more
stability to eigenvectors).

We investigated the impact of 𝑘 , the number of blocks, on the efficiency of clustering. The
experiment was performed as follows: For the series of 𝑝, 𝑚 values shown in caption of Fig. 5,
first 𝑘 were taken, for 𝑘 = 2, . . . , 16, the similarity block matrix was generated and then GSC
was performed. Fig. 5 shows the results. For 𝑘 ≤ 8 in case of combinatorial Laplacians and
for 𝑘 ≤ 6 in case of normalized Laplacians, the block structure was recovered correctly. For
bigger values, the correctness level dropped. Same experiment was repeated in the presence
of noise, from the range 0 to 0.001 (Fig. 6), from the range 0 to 0.01 (Fig. 7), and from the
range 0 to 0.1 (Fig. 8), As the figures show, apparently the noise contributed to correctness
improvement.

9 Conclusions

We have shown analytically that the Ugly Duckling effect identified by Watanabe, trivializes
the Graph Spectral Clustering.

Furthermore, the experiments indicate that 𝑘-means seems to be a handicap of the Graph
Spectral Clustering. We have pointed at this behaviour already in [25] for real world data.
Here we have shown that the problem persists even for ideal blockdiagonal structures of the
datasets.

As already indicated in [6], in our opinion it is not the blockdiagonal matrix that is essential
for spectral clustering success but rather a different similarity structure within each block.
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Figure 5. Percentage of correct clustering - combinatorial (to the left) and normalized (to the right)
Laplacian based GSC for the block structured similarity matrices with block similarities p= (0.4,
0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7,0.4, 0.7) and proportions of block cardinalities
m = 30 · (3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4)

Figure 6. Same as in Fig. 5 with addition of noise 0.001.
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Figure 7. Same as in Fig. 5 with addition of noise 0.01.

Figure 8. Same as in Fig. 5 with addition of noise 0.1.
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This insight may be used to correct the way of thinking about spectral clustering as such and
help find new application areas for it.
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