
STUDIA INFORMATICA
Nr 1 (26) Systems and information technology 2022

Norbert ZANIEWICZ1,
ORCID: 0000-0002-9516-7529

Andrzej SALAMOŃCZYK1
ORCID: 0000-0003-1562-6762

1 Siedlce University of Natural Sciences and Humanities
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

Comparison of MongoDB, Neo4j and ArangoDB databases using the
developed data generator for NoSQL databases

DOI: 10.34739/si.2022.26.04

Abstract. NoSQL databases are gaining more and more popularity and are an important alternative to
relational databases. Examples of such databases are Neo4j, MongoDB and ArangoDB. These databases
are described in this article, compared with each other, and the performance results for adding an object
to the database, deleting an object, searching and populating the database are presented. Results show
that the fastest database is MongoDB, except for one measurement of removal.

Keywords. NoSQL databases, Neo4j, MongoDB, ArangoDB

 Introduction

Database solutions, from relational, through network, hierarchical, object-oriented, to non-
relational, are dynamically developing with the use of new technologies. Companies constantly
adapt their solutions to the requirements of customers, trying to stay ahead of the competition
and gain even a temporary advantage. Thus, the database environment is one of the most
progressive. The rejection of the relational database model by the pioneers of non-relational

62 N. Zaniewicz, A. Salamończyk

solutions was a response to the market demand in the segment of more efficient solutions with
huge amounts of data. Companies such as Google and Facebook began working on various
ways to tackle the growing amount of all kinds of information they must store and process,
which has become increasingly costly both financially and efficiently.

Successive database systems were developed in the same period and met more and more
different needs for data storage. Graphs, which facilitate relationship mapping and finding
patterns, are currently used as purchasing scenario creation systems, e.g. on eBay. Document
databases that made it easier for application developers to store and process JSON documents
without the need to interfere with their structure.

The emergence of NoSQL databases was also associated with new database management
systems and, more importantly, new languages or query structures, often significantly different
from standard SQL. The flagship example are graph databases, based on relations that are
described edges of the graph between nodes. Graph languages such as Cypher, GraphQL,
Gremlin and SPARQL were created especially for the needs of these databases. Queries in
document databases look a bit more friendly to SQL users, where the query language is similar,
and sometimes almost identical to its relational counterpart or programming languages.

Adaptations of new solutions bring measurable benefits in the form of resource savings or
a significant improvement in operating efficiency. Therefore they are constantly updated, but
they try to keep their basics unchanged and are very often backward compatible. NoSQL
databases are an example of dynamic development, which was forced by the development of
the entire information technology industry. Demands had to be met with an appropriate
response. We can expect the emergence of many hybrid systems or activities for the
compatibility of operation of various solutions. Rarely, in large solutions, one database
approach is enough. Therefore, it is worth comparing various database systems, including
measuring their effectiveness.

 NoSql Databases

In this chapter we will discuss three examples of NoSql databases, they are Neo4j,
MongoDB, ArangoDB, which will be compared with each other.

2.1. Neo4j

Neo4j is not only a graph database system, but also the company responsible for it. In 2000,
future founders of Neo4j, influenced by the performance problems encountered in relational

63 Comparison of MongoDB, Neo4j and ArangoDB databases using the developed data generator…

databases, started working on a prototype of a graph database. The creators formalized their
activities only after seven years, establishing the company, and then the first versions of this
database appeared. However, only in 2010, version 1.0 appeared, starting a new stage of
database solutions.

The database implemented in Java was dynamically developing, and the following years
brought revised versions enriched with new functionalities. The creators collected more and
more funds and large clients using their solution. Currently, Neo4j is the most popular solution
among graph databases. It owes such a position on the market to its rich functionality.
Compliance with ACID (Atomicity, Consistency, Isolation, Durability), i.e. a set of properties
that guarantee the consistent execution of transactions in the database, support for clustering,
and ease of scaling. These are the features that affect the ever-increasing quality of this graph
database.

The offered paid solution, Enterprise version, provides excellent horizontal scaling, i.e. it is
very easy to add resources via new machines in the resource pool. Scaling is performed by two
types of clustering, which are high-availability clustering and casual clustering. The first type
of clustering enables the use of distributed machines, where one of the servers acts as
a supervisor over several slave machines. In the event of a failure, a new supervisor is selected,
and the database operates continuously, which yields high availability.

Casual clustering, on the other hand, provides transferable read-only replicas. When one of
the database instances fails, the primary servers provide read and write access, including data
modification. However, very often graph databases are used to search for information, hence
a significant number of replicas with read-only functionality. Such a structure allows for
efficient resource management and ensuring high-class security and availability. This solution
also has a load balancer in order to increase the comfort of use by evenly loading all available
resources.

For communication between the database and applications, a binary protocol Bolt created
in 2015 is used, which gained wider interest a year later by using it in version 3.0 of the Neo4j
server. This protocol, which works on TCP sockets, allows to send messages with parameters.
The server replies to such a query with a reply message with an optional stream of results. Neo4j
databases can be implemented as server solutions, and also embedded locally, e.g. in a Java
application (Fig. 1). This means that in the case of local solutions or implementation for mobile
devices, the burden of network communication is reduced. Neo4j also provides native Java API
for data manipulation in applications.

64 N. Zaniewicz, A. Salamończyk

Figure 1. Java application with locally embedded Neo4j database instance. Source: [8]

Providing such support from the manufacturer allows programmers to easily build
an application based on the provided API without involving server resources. Neo4j adopted
a graph data model, i.e. sets of nodes and edges between them described with values. Nodes
can store information about the object they represent. Edges are directed and described
connections of nodes in the graph. Such a connection allows you to easily perform such
operations as, for example, counting steps between the nodes of interest, as well as returning
dependent nodes in a characteristic manner, specified in the query.

The distinguishing feature of Neo4j is the use of its own query language Cypher. This
declarative query language was developed in the course of work on the graph database system.
Initially, it was intended to be the native query language only in Neo4j, but in 2015 it was
transformed into the openCypher initiative, which aims to provide the graph database segment
with a fully documented universal query language for all datasets of this type. Cypher is
a systematized translation of the description of the relationship of nodes and edges in the graph
into a query. Currently, it uses many keywords present in SQL, but often in a different sense
from its relational competitor. The entire language operates on relatively expensive patterns,
which, when properly used, allow to obtain results that are not available for classic database
engines.

Neo4j is currently used by big online stores for contextual suggestions. Changes to the graph
are tracked, such as items from the wish list, and based on them, more are proposed. A similar
mechanism is used to suggest items on auction sites based on searched phrases.

65 Comparison of MongoDB, Neo4j and ArangoDB databases using the developed data generator…

2.2. MongoDB

MongoDB is one of the document solutions in the NoSQL database segment. This means
that the system operates on storing data in documents similar to JSON. The document database
is popular. It is used by such large companies as Adobe, eBay and Electronic Arts. It is offered
in several versions, including free Community and paid Enterprise. The paid option includes
more database management functions and additional security options, e.g. authentication using
the Kerberos protocol. Like its competitors, it offers horizontal scalability and replication
mechanisms to ensure data security.

The scalability of this database is basically only limited by the amount of resources
connected in a distributed network. Thanks to the use of the Google BigTable sharding system,
i.e. the division into master and slave servers, the data is divided and spread over various
servers, which can be added to the pool of resources endlessly in theory. Data reading is
controlled by an appropriate process having knowledge of the data localization, which carries
out the request addressed to the server. The sharing system automates many distribution
processes and load care, thanks to which reading even from different servers is fast and can be
carried out simultaneously from different machines. Replication - that is, creating a server copy
to ensure redundancy based on the same solution as scaling, slave servers have a copy of data
from master servers, this ensures the desired redundancy and safety in case of failure.
Additional replicas can be used as additional read servers to increase performance.

MongoDB also provides database drivers for many programming languages, including
C++, C#, Java, PHP or Python which allows for its wide application. Communication with the
server is based on the http or REST interface, which allows for easy use in network applications.
The latest drivers allow to choose synchronous or asynchronous work with the database and are
developed to support other languages.

MongoDB is a NoSQL database and like other solutions of this type, it departed from certain
relational assumptions in favor of a more efficient system. This database uses documents as the
main data storage unit. As understood by this database system, a document is an equivalent of
a row in relational databases, with the difference that it can have nested values, which in the
case of standard databases must be implemented using foreign keys and additional tables. There
is also an option to use references to other documents, which makes it easier to map relational
database schemas in which we strive to normalize the data. The normalization process consists
in creating tables and relationships appropriate to the imposed rules, which is to prevent
redundancy and ensure data consistency.

66 N. Zaniewicz, A. Salamończyk

In the case of MongoDB, denormalized data models simplify the work , so is possible
manipulate the entire document in one operation. A document in such a database is
a hierarchically arranged data structure using an appropriate format, e.g. JSON (JavaScript
Object Notation) in visual representation and BSON - a JSON document in binary form.
The use of JSON documents made the default query language used in MongoDB to be
JavaScript. Moreover, each driver uses the structure of the language it was written into.
In practice, this means that the choice of language affects how the queries are built.

2.3. ArangoDB

ArangoDB is the name of a database system under a free and open source license, created
in 2011. Initially, it was published under the name AvocadoDB, which faced legal problems,
and a year later it got its current name. Proposed by ArangoDB. The database system is one of
the most universal because it supports as many as three data models: key-value, documents and
graphs.

The motivation for this direction of development was the combination of models already
offered by NoSQL databases in one solution. Neo4j uses graphs, MongoDB uses documents,
and the creators of ArangoDB decided to create a base with a multi-model approach to
overcome the need to use different solutions for different types of data. This relatively new
database system has many clients, incl. this is Cisco or Thomson Reuters, which is one of the
largest message delivery companies. It uses ArangoDB to build its platform for internal
information exchange, analysis and intelligence management. The AQL query language
in particular helps here.

The motivation for this direction of development was the combination of models already
offered by NoSQL databases in one solution. Neo4j uses graphs, MongoDB uses documents,
and the creators of ArangoDB decided to create a base with a multi-model approach to
overcome the need to use different solutions for different types of data. This relatively new
database system has many clients, incl. this is Cisco and Thomson Reuters, one of the world's
largest news delivery companies. It uses ArangoDB to build its platform for internal
information exchange, analysis and intelligence management, AQL query language helps in
such tasks.

Despite its young age, ArangoDB has been equipped with many functionalities that
competitors have. Providing, among others, vertical scaling - that is, the use of more and more
efficient servers, and vertical scaling, i.e. the creation of clusters from many servers. Like
MongoDB and Neo4j, it uses many servers, each of which has some data and depending on it
can be a leader (parent server) or a slave server. The entire system also uses coordinators who

67 Comparison of MongoDB, Neo4j and ArangoDB databases using the developed data generator…

act as an intermediary between the ArangoDB cluster and clients, thanks to which they perform
all or part of the query depending on the data they have. Such a structure will ensure easy
scalability by adding new servers to the pool of machines. The model used is also an important
aspect of scalability. Different models scale better vertically or horizontally.

ArangoDB also supports many programming languages, Java, JavaScript, PHP, .NET and
Scala are just some of them. In communication with the server, it can use the http protocol or
the binary VelocyStream protocol introduced in version 3.2, which in some solutions of short
queries gains an advantage over the http protocol. To support many models and use several of
them in one query, ArangoDB has implemented the declarative AQL (ArangoDB Query
Language). This language uses English words as keywords.

Currently, ArangoDB is becoming popular for undecided companies that are in the process
of defining their data storage needs, or are confident that a uniform solution will not meet their
needs. The discussed NoSQL databases are among the most popular and it was decided to focus
on them, test and compare them directly.

2.4. Testing and comparing NoSQL databases

Analysing the bibliography in terms of comparing databases, we most often encounter SQL
databases. When examining SQL databases, we can take into account various factors like
performance and security. For example Barczak et al., [1]. researched influence of indexing
methods on effective functioning of the database and Skaruz, [2], analysed the security of
databases combining neural networks and classification approach.

A performance comparison of both SQL and NoSQL databases is described in [3]. Li and
Manoharan compared read, write, delete, and instantiate operations on key-value stores
implemented by NoSQL and SQL databases. Their results showed that not all NoSQL databases
perform better than SQL databases.

More detailed studies on performance are described by Martins, Abbasi and Sá, [4]. They
tested and evaluated: MongoDB; Cassandra; HBase; OrientDB; Voldemort; Memcached and
Redis databases. Also five NoSQL databases (Redis, MongoDB, Couchbase, Cassandra,
HBase) were tested by Tang and Fan, [5], using a measurement tool - YCSB (Yahoo! Cloud
Serving Benchmark).

Another set of NoSQL databases (Couchbase, MongoDB and RethinkDB) was tested by
Pereira et al., [6]. They tested single thread and multiple threads scenarios. The results show
that Couchbase had a better performance at most of the operations, except for retrieving

68 N. Zaniewicz, A. Salamończyk

multiple documents and inserting documents with multiple threads, operations in which
MongoDB yields better result.

Gupta et al., [7], selected database for different type of data, MongoDB (document stores),
Cassandra (wide column stores), Redis (key value stores), and Neo4j (graph databases) and
compared them with each other. Their results show that write and delete operations are fast for
databases MongoDB, Redis and Cassandra, whereas read operation is comparatively slow in
Cassandra.

One can notice that comparisons and performance studies on different kits are popular and
worth doing. The set of tested bases depends on the current popularity and usefulness in specific
applications. Zaniewicz, [8], compared databases MongoDB, Neo4j and ArangoDB in his
master thesis and some of the results are presented later in this article. For testing, he used a data
generator developed by the author.

 Creating a test dataset using the data generator

The "imdb-5000-movie-dataset.csv" file from www.kaggle.com was taken as input data. It
is a site of a community of scientists and machine learning people collecting and sharing public
data sets. The above-mentioned file contains a collection of almost five thousand films, each
record is described by 27 columns containing, among other information, such information as
the name and surname of the director, film title, actors' personalities, a link to a page in the
IMDb film database, country of production, budget and many more.

The first step in the design approach was to determine on the basis of what features each
database is to be built and what data will give interesting results in the graph and document
approach. In the next stage of creating the file, the file was adapted to the program's
requirements, this means adopting appropriate separators and checking whether they do not
appear in English film titles, because some of them contain semicolons, colons, periods or
apostrophes. Then, each record was marked with a number as an identifier, and in the next steps,
records containing blank values were reduced to maintain the stability of the implemented
solution. The data in this form had to be saved in the program memory in order to parameterize
them for the purposes of the queries being performed, to avoid the impact of Java internal
mechanisms on the query execution time.

In this way, a test set was obtained that was sent to individual queries and thanks to which
three databases with very different approaches, having over three thousand records, were
created.

69 Comparison of MongoDB, Neo4j and ArangoDB databases using the developed data generator…

 Results

The difficult task is to choose a feature that will not favor a specific database solution. Each
of the database systems described in this paper was created to fill the gap for the needs of SBD
with a specific specification. In order to maintain comparable results, the basic time features
for all databases were tested, such as database creation time, execution time of a simple query
looking for a document or graph node, time of removing a record from the database and the
time of updating the record.

The first tested parameter is the time of creating the database, taking into account the used
document databases and the graph database, this is the time when it is filled with the test data
set, and in the case of Neo4j also the creation of the graph edge, which is an important element
generating a fairly large load. Another parameter examined is the execution time of a simple
query selecting a record by title of the movie from each of the databases. The time of removing
a given record and the time of editing the record were further tested.

All these parameters are also present in traditional, relational databases, which allows for
a more accessible understanding of the obtained results based on the characteristics and
preferred operations of specific solutions. All the results were related to information about the
applications of each of the solutions and how it may affect the results.

All the tests carried out in order to obtain reliable values were repeated one hundred times.
Based on the obtained results, the means, maximum and minimum values were drawn. All
tests were performed on local servers using the same computer specification, i.e. Intel®
CoreTM i5-6500 processor clocked at 3.2GHz, 16GB DDR4 2133MHz RAM and WD Blue
2TB 5400rpm hard drive. The databases also used their suggested default settings without
optimizing them to improve performance.

Collecting the above results allows you to create a comparison that will present the results
achieved by the tested databases. You have to bear in mind that despite the huge differences
between them, they have the same goal - to organize and store data in an organized manner.

The first test is adding a new node / document to the database, i.e. its main organizational
unit, the results are shown in Tab. 1.

Table 1. Summary of node / graph creation results in databases. Source: [8]

Parameter Neo4j MongoDB ArangoDB
Mean 0,88 ms 0,75ms 1,01ms
Min <1 ms <1 ms <1 ms
Max 3 ms 5 ms 6 ms

70 N. Zaniewicz, A. Salamończyk

When analyzing Tab. 1, it can be noticed that all databases, creating their own types of
organizational units, achieve quite similar times. The differences in average times are small,
with only Neo4j having a slight advantage in the maximum time.

Tab. 2 shows the results of the query execution time removing the "record" from the
databases. The results obtained together show that individual solutions differ significantly from
each other.

Table 2. Summary of the results of removing a node/document from the database. Source: [8]

Parameter Neo4j MongoDB ArangoDB
Mean 0,81ms 2,3 ms 1,13ms
Min <1 ms <1 ms <1 ms
Max 2 ms 168 ms 6 ms

The results of this query are different from creating node, although both operations can be
considered basic for each database. The removal times for MongoDB differ significantly from
the results of adding it and the results achieved by competing solutions.

The maximum removal time in the case of MongoDB significantly deviates from the rest
of the results and strongly affects the average, however, this sample, which constitutes 1% of
all results, can be considered a statistical error caused, for example, by a temporary load of the
test set or connection to the MongoDB server.

However, all the obtained values can be taken in the fast category. The average MongoDB,
not taking into account the given outliers, is about 0.6 ms, which makes the database the fastest
in terms of removal. Next test consisted in searching for a node or document in a given database
solution, Tab. 3 summarizes these results.

Table 3. Summary of node / document search results in databases. Source: [8]

Parameter Neo4j MongoDB ArangoDB
Mean 0,64 ms 0,18 ms 5,07 ms
Min <1 ms <1 ms <4 ms
Max 12 ms 12 ms 8 ms

Searching in databases gave quite diverse results, the MongoDB document base was the
best in this task, the worst, which may be a surprising result, ArangoDB. The graph solution is
quite competitive in relation to MongoDB.

The high ArangoDB result is due to the lowest times achieved, a significant part of which
reaches around 4 ms, which is a result four times higher than that of the competition, but retains
a much lower maximum time.

71 Comparison of MongoDB, Neo4j and ArangoDB databases using the developed data generator…

The last parameter taken into account was the database creation along with the population.
Such a choice was made due to the low time of creating the base structures of the database - the
creation of a graph base or document collection is measured in milliseconds, and this process
is often performed only once.

For this reason, the results of the creation itself would have a marginal impact on efficiency,
however, taking into account filling the base in an appropriate manner according to the adopted
patterns, we can simulate a change, for example, of the company's based solution. Tab. 4
summarizes the results of all databases and two variants of the Neo4j database, the first
noticeable factor is the change of the unit to seconds (the MongoDB result has been properly
formatted for easier reading).

Table 4. Summary of the results of creating and populating databases. Source: [8]

Parametr Neo4j
with edges

Neo4j
without
edges

MongoDB ArangoDB

Mean 682,80 s 244,22 s 0,42 s 2,79 s
Min 382 s 204 s 0,4 s 2 s
Max 837 s 480s 1,07 s 7 s

 Conclusions

In this work, a comparison of Neo4j, MongoDB and ArangoDB databases was made using
data generated in a data generator prepared for this purpose. The article also presents a short
description of these databases.

To evaluate the effectiveness, a data generator developed for the purpose of the topic was
used, which, on the basis of a data set about movies from the IMDB website contained in a .csv
file, created an appropriate structure to create the mentioned databases, fill them and test some
aspects of the performance offered by NoSQL databases, which allowed for carrying out
a database comparison. Analyzing the results presented in Results section, it is clear that graph
bases were formed the longest. This result is not surprising due to the complexity of the graphs
and the number of nodes in them. The shortest was the implementation of databases based on a
denormalized document form, i.e. MongoDB and ArangoDB.

Looking at the averages of the results it is possible to say that the fastest solution is
MongoDB, except for one measurement of removal, which definitely overestimated the average
achieved by the base. Considering the versatility of ArangoDB (it also combines a graph
engine), it can be concluded that it is a very competitive implementation of a document solution
with the possibility of using graphs. It is important in the analysis of the results to take into

72 N. Zaniewicz, A. Salamończyk

account that the database creation process is usually carried out once, subsequent iterations
involve modification or extension of the solution. Therefore, despite the considerable
development time, graph databases are still a competitive and desirable data storage solution.

References

 Barczak A., Zacharczuk D. and Korzeniecka A. (2019). The influence of indexing
methods on effective functioning of the database. Studia Informatica. System and
Information Technology, 17(1-2), 5–18.

 Skaruz J. (2020). Database security: combining neural networks and classification
approach. Studia Informatica. System and Information Technology, 23(1-2), 95–115.
https://doi.org/10.34739/si.2019.23.06

 Li Y. and Manoharan S., "A performance comparison of SQL and NoSQL databases,"
2013 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), 2013, pp. 15-19, DOI: 10.1109/PACRIM.2013.6625441.

 Martins P., Abbasi M., Sá F. "A Study over NoSQL Performance". In: Rocha Á., Adeli
H., Reis L., Costanzo S. (eds) New Knowledge in Information Systems and Technologies.
WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 930. Springer,
Cham. https://doi.org/10.1007/978-3-030-16181-1_57

 Tang E. and Fan Y., "Performance Comparison between Five NoSQL Databases," 2016
7th International Conference on Cloud Computing and Big Data (CCBD), 2016, pp. 105-
109, DOI: 10.1109/CCBD.2016.030.

 Pereira D. A., Ourique de Morais W. and Pignaton de Freitas E. NoSQL real-time
database performance comparison, International Journal of Parallel, Emergent and
Distributed Systems, 33:2, 144-156, 2018, DOI: 10.1080/17445760.2017.1307367

 Gupta A., Tyagi S., Panwar N., Sachdeva S. and Saxena U., "NoSQL databases: Critical
analysis and comparison," 2017 International Conference on Computing and
Communication Technologies for Smart Nation (IC3TSN), 2017, pp. 293-299, DOI:
10.1109/IC3TSN.2017.8284494

 Zaniewicz N., "Porównanie baz danych MongoDB, Neo4j i ArangoDB z wykorzystaniem
opracowanego generatora danych do baz NoSQL", Master Thesis, Siedlce University of
Natural Sciences and Humanities, 2019, (in Polish)

