
AUTOMATIC PROGRAMMING SYSTEM WITH ACCESS IN
THE NATURAL LANGUAGE

Jan Kazimierczak1

Abstract. In this paper, acquisition of knowledge from user’s programs written in
Pascal to the knowledge base of the computer is introduced. It is shown that system
with such a kind of knowledge can be used as the automatic programming system.
First, representation of knowledge acquired by the computer from different programs
is characterized. Then searching for pieces of knowledge in the knowledge base
needed for synthesis of a program specified in user requirement is described. Finally,
the construction of a new program from the found pieces of knowledge is shown.

Keywords. Artificial intelligence, automatic programming, knowledge representation

1 Introduction

One of the more important problems in the area of Artificial
Intelligence is automatic programming. One of approaches to automatic
programming that could be practically used we want to introduce in this
paper.

Our approach to automatic programming is such that on the basis of
user's requirement expressed in natural language the computer performs
the synthesis of a program to solve the user's task mentioned in the
requirement. In order to accomplish that approach, the computer possesses
suitable knowledge in its knowledge base (KB). That knowledge is acquired
by the computer from some users programs written in Pascal. These
programs are purposely entered into the computer by the knowledge
engineer to construct the initial knowledge base.

As the computer should construct a user program on the basis of a
requirement provided by a user in the form of natural language sentences,
in the proposed solution the KB consists of two parts. The first part contains
the knowledge necessary for the natural language understanding. Such a
knowledge is acquired by the computer from comments included in user
programs. The second part of the KB contains the knowledge needed to
synthesize user programs. Such a knowledge is acquired from algorithms
structures, sequences of opcodes and declaration statements.

The Automatic Programming System with such kind of the KB behaves in
such a way that user’s requirement is given on the first part of KB. The
computer transforms this requirement into representation of its semantics.

1 Wrocław University of Technology
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
e-mail: kazim@ict.pwr.wroc.pl

 2

Then computer checks whether this semantics has its counterpart in the
first part of KB. If such a semantic counterpart is included there then symbol
cj of its semantics is entered into the second part and causes automatic
synthesis of user program from pieces of knowledge included in this part.
The above described bahaviour of automatic programming system is shown
in Figure 1.

Figure 1. The behavior of the automatic programming system

The leading idea of the presented approach to automatic

programming arises from two facts. The first fact tells us that in each user
program written in a programming language there are human knowledge
about a problem and method of solving it. We well know that the present
computer does not remember the knowledge included in user program.
When executing a given user program is completed by the computer, the
program is erased from computer memory. Hence, after erasing the user
program, the computer does not know what problem was solved and does
not remember the human knowledge that was concealed in the executed
program. According to the above remarks, the computer should acquire the
knowledge from user programs to own knowledge base. The second fact
tells us that user programs written in a programming language consist of
finite number of components such as structural components of algorithm,
groups of structural components, structural components of declarations,
kinds of operation codes and so on. Note that the same components
appear in different programs. The above mentioned components can be
considered as small pieces of knowledge which, after transforming into
symbolic form, should be stored in the KB. From those pieces of the
knowledge a user program can be constructed.

In the proposed automatic programming system we distinguish two
cases of the computer behavior during automatic synthesis of a user
program. The first case is retrieval of such a program from which the
knowledge was acquired for the KB. The second case is creation of a new
program from pieces of knowledge in the KB acquired from another
different programs.

The first case occurs when user’s requirement has its semantic
counterpart in the first part of the KB. The second case occurs when a
user’s requirement is not understood by the computer, because for the
requirement there is no its semantic counterpart in the KB. This means that

A user’s
program
in Pascal

A user’s
requirement

I KB

II KB
The program
of automatic
synthesis

cj

 3

the computer has not knowledge for synthesis a program indicated with the
requirement. In this case the user must extend his requirement by writing
titles of subtasks belonging to the task expressed in the requirement or by
writing name of action to be performed by the computer and names of
objects appearing in the action. In this paper we consider only the second
case.

2 Representation of Natural Language Sentences and its Using in

Automatic Programming System

The knowledge acquired from programs written in Pascal is divided
by the computer into small pieces of knowledge. To such a piece of
knowledge a sentence in natural language is assigned. This sentence
describes the role of the given piece of knowledge in the program. The
division of knowledge included in a program into pieces is determined by
positions of comments in the program. These comments, as the natural
language sentences, are transformed by the computer into their symbolic
representation in the first part of the knowledge base (IKB).

At first, the computer codes the words appearing in a given comment
using symbols di (i = 1,2,...). Assignments of symbols di to words are written
down in the dictionary D . Together with the dictionary D the other

dictionary D is formed in which the words are written down in alphabetical
order and to each word a symbol wj (j = 1,2,...,9) of lexical category is
assigned. On the basis of lexical categories wj each sentence is divided into
groups of words according to some rules [5]. For example, suppose that the
KB is empty and the main comment in a program from which the knowledge
is acquired has the form as follows:

This program determines the best move in chess from a given board
position (i)

After coding words by symbols di the sentence (i) is divided into the
following groups of words:

d1,d2 =a1 ↔ This program;

d3 =a3 ↔ detrmines;

d4,d5,d6 =a3 ↔ the best move;

d7,d8 =a4 ↔in chess;

d9,d10,d11,d12,d13 =a5 ↔ from a given board position.

Each sequence of symbols di can be introduced in the form a graph. For
example, the graph represented the sequence d4,d5,d6 =a3 has the form
shown in Fig. 2. On the basis of the above graphical interpretation the
sequence a3 is transformed by the computer into the symbolic expression
D+(a3),

 4

0123
433

3
631

2
531

1
4

0
3))))(((()(dazdazdazdaD =+

where the symbol z1 denotes the space between symbols dj and z3 means
the connection between the last and first symbol dj in the given sequence.
The symbolic expressions D+(ai), representing groups of words are
combined together to obtains only one symbolic expression D’ +
representing the set of groups of words.

Figure 2. Graph representing the sequence
3654 ,, addd =

The sentence (i) being the comment in a program is treated by the
computer as the sequence sj of symbols ai denoting names of groups of
words. Namely the sentence (i) is considered as follows:

s1 = a1, a2, a3, a4, a5

The sequence s1 is transformed by the computer into the following symbolic
expression A+(s1),

++ ′== AaszaszaszaszaszasA 012345
113

5
511

4
411

3
311

2
211

1
1

0
1))))))(((((()(

The symbolic expression A’+ represents in the KB the set of natural
language sentences. In the considered case the expression A’+ represents
the set consisting of only one sentence (i).

The symbolic expressions A’+ and A’+ are stored in the first part of
KB where they represent knowledge about the computer knowledge in the
domain of automatic programming. As it is known to the computer with such
knowledge a user’s requirement expressed in natural language is entered.
This requirement is transformed into such form of representation which is
stored in the first part of KB. If the sentence being user’s requirement is the
same as a sentence represented in the first part of KB then this means that
the computer is able to construct a program adequate to the given
requirement. In this case we say the user’s requirement has the same
semantics cj as a sentence in the first part of KB and symbol cj (see Fig. 1)
initiates the synthesis of a program from pieces of knowledge included in
the second part of KB. Notice, that many natural language sentences can
have the same semantic meaning cj. Each sentence represented in the first
part of KB has its semantic meaning cj. If to the computer such a sentence
is entered as not represented in the first part of KB the computer should
performs some operations both on the representation of the requirement
and the representation of sentences in the KB. These operations are made
in order to check whether the requirement has the same semantic meaning
as one of sentences represented in the first part of KB. However, most

d4 d5 d6

z3a3

z1a3 z1a3

 5

often the result of these is unsatisfactory because in the requirement
another words can be included than words included in a sentence which
has the same semantics as the requirement. In order to avoid difficulties in
the indification of semantic meaning of user’s requirement two forms of
knowledge representation in the first part of KB should be stored, i.e.
representation of sentences and representation of their semantics.

To obtain representation of the semantics to each group of words in
the given sentence the semantic category is assigned. In this way the
representation s1 = a1, a2, a3, a4, a5 of the sentence (i) is transformed by the
computer into the following sequence of semantic categories:

AGENT ACTION RESULT OBJECT ELEMENTS

For the purpose of formal representation of this sequence, to each pair of
semantic categories a symbol uj (K,2,1=j) denoting this pair is assigned.
According to this the above sequence is transformed into the following form:

AGENT u1 ACTION u2 RESULT u3 OBJECT u4 ELEMENTS u0 (1)

where u0 denotes the end of sequence and connection of it with beginning.
Assignments of symbols uj to pairs of semantic categories are stored in the
table U . The sequence (1) obtains the symbolic name h1 and the symbol

∗
1c of semantics on the level of semantic categories. Then the sequence (1)

is transformed into symbolic expression +′U
~

 as follows:

0145
111

5
011

4
411

3
311

2
211

1
1

0))))((((((
~

KuhcuhcuhcuhcuhcuU ∗∗∗∗∗+ =′

In the first part of KB the expression +′U
~

 represents the set of sequences
of the type (1), in this case this set contains only one sequence.

After obtaining the representation of the sentence (i) on the level of
semantic categories the computer determines the semantics of sentence (i)
on the level of semantic features. The words which constitute semantic
meaning within groups are replaced by semantic features. Under concept of
semantic feature we mean a set of words having the same semantic
meaning. For example, the words boy, girl, women, ... have the semantic
feature human. There are the following semantic feature in the sentence (i):

b1 = regulation (for “program”),
b2 = MBUILD (for “determines”), in agreement with CD theory,
b3 = move,
b4 = game (for “chess”),
b5 = position (for “board position”).

After replacing semantic categories appearing in the sequence (1) by
semantic features the following sequence is obtained:

10544332211 ,,,, cububububub ↔

 6

where symbol c1 denotes the semantics of the sentence (i). This sequence
is transformed into the symbolic expression B’+,

0145
110

5
514

4
413

3
312

2
211

1
1

0))))((((((KbcubcubcubcubcubB =′+

The expression B’+ represents the set of semantics of sentences, it will be
extended by sequences represented semantics of another sentences
entering to the computer. The relation between representation s1 of the
sentence (i) and representation c1 of its semantics has the following form:

15044332211 ,,,, sauauauauau ↔

This sequence is transformed into the symbolic expression U’+ as follows:

0145
115

5
014

4
413

3
312

2
211

1
1

0))))((((((KusausausausausauU =′+

The expression +′U represents the set of relations between representation
of sentences and representation of their semantics.

Suppose now that in the first part of KB the representation of
sentence (i) and representation of its semantics are stored and to the
computer the following user’s requirement is entered:

Compute the best walk strategy for a given configuration on
chessboard

(ii)

This sentence is transformed by the computer into the following symbolic
representation:

98762 ,,, aaaas =

The sentence (ii) is divided by the computer into four groups of words as
follows:

a6 = compute
a7 = the best walk strategy
a8 = for a given configuration
a9 = on chessboard

The following sequence of semantic categories assigned to groups of words
is determined:

ACTION u2 RESULT u5 5u ELEMENTS u6 OBJECT u0

The sequence u2, u5, u6, u0 is searched in the symbolic expression +′U
~

 but it
is not included there in agreement with assumption given above. Notice that
some sequences of semantic categories have the same semantics ∗

jc . For

example, the sequence

ACTION u7 OBJECT u4 ELEMENTS u8 MANNER u0

 7

has the same semantics ∗
jc as the sequence

AGENT u1 ACTION u7 OBJECT u4 ELEMENTS u8 MANNER u0 (2)

There is table V in the computer memory where equivalent of
subsequences of symbol ui is written down. In this case in the table V the
equivalent u1↔u1,u7 is written down. In agreement with the above
interpretation of equivalent of semantic categories sequences, the symbols
uj appearing in the sequence of semantic categories derived from the user’s
requirement (ii) are searched for in the table V . The equivalents 212 uuu ↔

and 4365 ,, uuuu ↔ are found in the table V . According to this, the

sequence u2, u5, u6, u0 included in the sequence (2) of semantics categories
is transformed into the sequence u1, u2, u3, u4, u0. This sequence is
compared with sequence of symbols uj included in the sequence (1) of
semantic categories. Both sequences are identical what denotes that the
user’s requirement has the same semantics ∗

1c as the sequence (i)
represented in the KB. At the next step the computer determines the
semantics of the user’s requirement (ii) on the level of semantics features.
The following sequence is obtained:

04655322 ,,, ubububub (3)

This sequence is searched for in the symbolic expression B’+, but it is not
included there. Therefore the computer performs jump to the table V
where equivalents 212 ,uuu ↔ and 4365 ,, uuuu ↔ are found. According to
this, the above sequence (3) of semantic features is transformed into the
sequence

054433221 ,,,, ububububub∗

This sequence is searched in the symbolic expression B’+. It is included
there and has assigned to itself the symbol c1 of semantics of the sentence
(i) and b* = b1. This fact denotes that user’s requirement (ii) has the same
semantics cj as the comment of a program and the computer is able to
constructs this program.

3 Representation of Knowledge included in Computer Program

During knowledge acquisition the algorithm included in the program is split
into small parts. To each of such small parts a comment with semantics cj is
assigned. Then each small part of the algorithm is split into algorithm
structure and the sequence of opcodes. To algorithm structure in small part
and to the sequence of opcodes in this part the symbol cj of semantics is
attached. Algorithm structure is divided into structural components.
Structural components of algorithm form a set of structural components in

 8

KB. From structural components acquired from small part with semantics cj
the group with name ei of structural components is constructed. It
represents in KB the algorithm structure with semantics cj. From groups ei
of structural component the set is formed in KB. Acquisition of knowledge
from algorithm is shown in Figure 3.

Figure 3. Acquisition of knowledge from algorithm in Pascal

A structural component of algorithm is defined as a sentence in
Pascal that begins with one of the following words: begin, for, if, while,
repeat, case. If in the given component there is other component then it is
removed and replaced by the word “next”. Moreover, the place occupied in
the given component by opcode is replaced by the word “op”. For example,
let’s consider the following fragment of an algorithm

for i:=1 to n do
 begin
 s:=s+a[i];
 diff:=a[i] – avg;
 end

It will be represented by two structural components as follows:

for op do next – 3uf i

begin op end – 01uf i+

where fi (i = 1,2,...) is symbolic name of structural component and the
symbol uj (j = 1,2,...) indicates the structure of the given component fi. The
structural components of algorithms are transformed by the computer into
symbolic forms. The different symbolic forms of components are combined
together and create in KB the set expressed in the form of a symbolic
expression B’+. From sequence of structural components fi included in the

Sequence
of opcodes

for ci

Algorithm
structure

for ci

Operands

Patterns
of opcodes

Structural
components

for ci

The set
of structural
components

Group
of structural
components
s

The set
of groups
of structural
components
s

1i
c

3i
c

4i
c

5i
c

Algorithm Declaration

 9

given functional part of algorithm a group en of structural components is
constructed. It represents in KB the algorithm structure of the given
functional part The set of those groups is stored in the second part of KB in
the form of a symbolic expression F’+. Relations between the first part of the
KB and the second one are included in a expression C ’+.

The declaration of a program, from which the knowledge is acquired,
is transformed by the computer into another form called further the form 2.
Namely, names of constants are coded by the symbol t, variables are coded
by the symbol q and names of types are coded by the symbol o. For
example, the statement var i, j: 1..n is transformed into var q, q: 1..t
where term q, q: 1..t we call a structural component of declaration. The
words and terms appearing in a given structural component are coded by
symbols l j (j = 1,2,...). Each structural component of declaration treated as
the sequence of symbol l j obtains the symbolic name ki (i = 1,2,...). In the KB
the set of structural components is stored in the form of symbolic
expression L’+. The sequence of symbols ki is split by the computer into
groups of structural components assigned to the words const, type and
var, respectively. Each group obtains symbolic name hi (i = 1,2,...). The set
of groups hi is stored in the KB in the form of a symbolic expression K’+.
The declaration of a given program gi is treated by the computer as the
sequence jiii ch,h,h

321
↔ , where cj denotes the semantics of the main

comment in the program gi. The set of sequences
321 iii h,h,h is stored in the

KB in the form of a symbolic expression H’+. Notice that a given structural
component ki can appear in many different groups hi. Similarly a given
group hi can appear in many different declarations.

During the knowledge acquisition the names of operands defined and
declared in a given declaration are replaced by names ki of structural
components. According to this the operands appearing in opcodes are
replaced by symbols ki. Each operation code is represented in the KB by
two components. The first component is the kind of opcode to which the
given operation code belongs, this kind we called a pattern of opcode. The
second component consists of operands, denoted by symbols ki, which
should be inserted into the pattern of opcode. For example, the operation
code j:=1 to n which is included in the instruction for is transformed into
the pattern m1:=1 to m2 , where symbols m1, m2 denote virtual operands.
During knowledge retrieval those virtual operands are replaced by real
operands in agreement with the retrieved form 2 of the given declaration.
The real operands are denoted by symbolic names ki of such structural
components of the given declaration as indicate these operands.

The patterns of opcodes obtain symbolic names r i (i=1,2...) and are stored
in Table R . The sequence of names r i attached to sequence of opcodes in
the given functional part of algorithm with semantics cj is inserted into a
symbolic expression R’+. This expression represents the set of all
sequences of opcode patterns appearing in programs from which the

 10

knowledge was acquired to the KB. Together with the expression R’+ a
expression +′K& representing the set of sequences kj of operands named by
symbols ki is stored. The relations between the semantics cj of the given
functional part of algorithm and the first symbols r i and jk′ assigned to this

part are stored in Table C .

4 Synthesis of a New Program

Synthesis of a new program is that the computer constructs a program from
small pieces of knowledge acquired from another different programs. Let us
assume that a user’s requirement entered into computer has not its
semantic counterpart in the first part of the KB. In this case the computer
asks the user to divide the problem included in the requirement into
subproblems. According to this, the user writes new requirement consisting
of sentences defining subproblems of problem to be solved by computer.
Assume that the new requirement consists of two sentences

1i
s and

2i
s

referring to some subproblems. The computer checked that semantic
meaning of the sentences

1i
s and

2i
s have their semantic countparts

1j
c

and
2j

c in the first part of KB. Actions of the computer during understanding

user’s requirement are shown in Figure 4. For simplify we assume that

31
cc j = and 192

cc j = . The symbols 31
cc j = and 192

cc j = are searched for in

the symbolic expression C’+,

KKK
21 31119133

0 (,,((m
t

m
k cgeccgecC =′+ (4)

On the basis of the expression C’+, the computer finds out that the
algorithm to solve subproblem with semantic meaning c3 was included in
the program g1 from which the knowledge was acquired to the KB. Similarly,
the algorithm to solve subproblem with semantics c19 was included in the
program g3. We assume that, before transforming into symbolic form in KB,
the part with semantics c3 of algorithm in the program g1 had the original
form as follows:

for i:= 2 to n do {...c3...}
begin

 for j:= n downto i do
 if a[j-1]>a[j] then
 begin {...c4...}

x:= a[j-1];
a[j-1]:= a[j];
a[j]:= x

end
end

 11

Similarly, the part with semantics c19 of algorithm in the program g3 had the
original form as follows:

Figure 4. User’s requirement understanding

begin {...c19...}
 total:=0;
 for i:= 1 to numelts do

begin {...c20...}
read (num[i];
total:= total + num[i]

end
avg:= total/numelts;
writeln (‘average is’ : avg)

end

From the expression C’+ (4) it is followed that the group of structural
components fi of the algorithm structure for subproblem with the semantics
c3 is denoted by the symbol e3 and for subproblem with c19 is denoted by the
symbol e11. In the second part of the KB there are stored Table E and the
symbolic expression F’ + representing the set of structural components fi.
The Table E (er – xn – fi) consists of three columns, in the first one the
symbol er is stored, in the second one the address xn of er in E’+ is stored, in
the third one the symbol fi of the first structural component in the group er of
components is stored. We assume that the expression F’ + has the form as
follows:

LLL
21 jcjc'C =+

e3 e11

I KB

II KB

A user’s
requirement

semantics
recognizing

subproblem 1

subproblem
2

si 1

cj 1

cj 2

x1

x2

TAB C

M M

M M

si 2

1jc
2jc

 12

01
9117

1
10

123
4111101150112

3
91153

2
33

1
6

145
431032

5
533633113

4
4

))feu(f,)))feu,feu,feu(feu,feu(

feu(f,)))feu,feu(feu,feu,feu(fF

K

KK

∗∗

∗∗
+ =′

On the basis of Tables E and F , and the symbolic expression +′F the
computer determines sequences of structural components fi forming the
groups e3 and e11 as it is shown in Fig. 5. These sequences have the
following forms:

1911029710593419

3302536341534

for ,,,,,,

for ,,,,,,

csfufufufufufuf

csfufufufufufuf

−
−

∗∗

∗∗

The pairs ∗∗uf denote that in the considered groups of structural

components fi there are also another groups. We assume that in the
sequence e3 and e11 there is the group e4 = f7u0. The sequences e3 and e11
are combined together. On the basis of Table F , Table B and the
symbolic expression B’+ each term fiuj appearing in the sequence is
translated into the sequence of words in Pascal. As the result the following
algorithm structure of the new program is obtained:

f11u4 – begin
f4u3 – for op do {...c3...}
f5u1 – begin
f4u3 – for op do
f6u3 – if op then
f7u0 – begin op end {...c4...}
f5u2 – end
f9u1 – begin {...c19...}
 op
f4u3 – for op do
f7u0 – begin {...c20...}
 op
 end
f9u5 – opp
f10u7 – writeln op
 f9u2 – end
f11u2 – end

 13

Some operations performed by the computer during synthesis of
declaration and operations codes are shown in Figure 6. Having the
algorithm structure of the new program, the computer proceeds to construct
the declaration and opcodes which should be inserted into places occupied
by symbols “op”. Because the information about declaration is included in
the representation of operation codes at first the representation of
sequence opcodes assigned to the part with the semantics cj = c3 is
considered. Recall that each opcode is represented by a pattern r i of
opcode and sequence jk′ of operands. The sequence of symbols r i

attached to the semantics c3 is concealed in the symbolic expression R’+,
whereas the sequence of symbols jk′ is concealed in the symbolic

expression +′K& . In the considered example we assume that the symbolic
expressions R’+ and +′K& have the form as follows:

012
111932191

1
10

123
743

3
942

2
842

1
7

123
433

3
631

2
531

1
4

1234
3203

4
13202123

3
3

0

),))()))((()))(

(())))(((

K

K

rcz,rczr,rczrczrczr,rcz

rczrczr,rczrcz,rczrR =′+
 (5)

012
13203

2
14202

1
13

1234
9193

4
12191

3
11191

2
10191

1
9

145
331

5
531

4
433123

3
3

0

),))(())))(((

())))((((

K

KK&

kczkczk,kczkczkcz

kczk,kczkczkcz,kczkK

′′′′′′

′′′′′′′=′+
 (6)

((LLLLL 4111
3

9533
4

4
' feuffeufF =+

for op do

M

algorithm
structure

Result of searching

LL ,,,,,, 3419341534 ufufufufuf

((LL 841
1

7456
' bfzbfzbB ii ++ =

876 bbb

M

M

M M

M M
3e 3x 4f

11e 11x
9f

M M M
ix

9f jx
2i

b

4f 6b 11e3e

F

M

M

M M

M M

for 6b ix

B

1

2

3
4

5

6

7

8

3e

11e
E

E

Figure 5. Synthesis of the algorithm structure of a new program

 14

On the basis of Table C , where there is the assignment 443 ,krc ′↔ , the
computer finds out that the first pattern of opcode in the sequence of
opcodes attached to the small part of algorithm with the semantics c3 is r4
and the sequence of operands which should be inserted into r4 is 4k′ .

Having the first opcode pattern r4 for c3 the computer derives from the
expression R’+ the following sequence of opcode patterns:

r4c3, r5c3, r6c3 (7)

Similarly as above, from the expression +′K& the following sequence is
derived:

333534 ,, ckckck ′′′ (8)

The sequences (7) and (8) are put together, what results in the following
sequence:

3365354343 ,,)(kcrkcrkcrcR ′′′=′ (9)

MM M

M

M

M M

3

1

2

34

5

6

7

8

3

((LLL 2191

1

10531

1

4
' rczrrczrR =+

h1

x3

c19

x1

c3c19

c1

r10 9k'

4k'

x19

_ _

_

M_

r4

r4

r10 x j

xi

MM M

M MM

C R

((LLL
'
10191

1'
9

'
531

4'
4

' kczkkczkK =+

M

M

MM

M M
k7,2 9k' xm

xn4k'k5,1, 4k

K'

Results of searching

LL 19103534 ,, crcrcr LL 19
'
93

'
53

'
4 ,,, ckckck

LL
'
91910

'
535

'
34 ,,, kcrkcrkcr

M

M

MM

M M

k5
xi l52

M

M

MM

M M

l52
q,q: xj

(LL 5351

1

52
' lkzlL =+

L

K

LL)(),,(),,(2,719101,542,53541,534 kcrkkkcrkkcr

5352,ll

Declaration

M

tqq 1:,
M

M

M

11 1:, tqq

the form 2 the form 3

L),,,(),,(112351134 qtqcrtqcr

m : = 2 to m 1 2

q : = 2 to t1 1

18

14

13

11

12

10

15

16

17

17

7

c19

4

9

c c

. . . .

Figure 6. Synthesis of the declaration and operation codes

 15

Next the symbols ik′ in (9) are replaced, on the basis of Table K ′

(jii kkk ′↔
21

), by the symbols ki being names of structural components of

the declaration. As the result the sequence)(3cR
(

 is obtained:

),(),,(),,()(2,56361,542,53541,5343 kkcrkkkcrkkcrcR =
(

 (10)

Symbols ki appearing in brackets are written down in Table K , where to
every symbol ki the first symbol l j in the sequence

321 jjji lllk = is assigned.

The sequences of symbols l j attached to symbols ki are searched for in the
symbolic expression L’ +. The structure of L’ + has the form:

KK 461
1

54
12

5253
2

5351
1

52
0 (),))(((lkzllkzlkzlL =′+ (11)

The sequences of symbols l j derived from L’ + are translated, on the basis
of Table L , into words and terms in Pascal. As the result the following
fragment of the form 2 of declaration is obtained:

const t = y ↔ k4
 var q, q: 1..t ↔ k5
 q: array [1..t] of integer ↔ k6
 q: integer ↔ k7

Symbols t and q obtain indexes in the form integers (1, 2, 3, ..) in ordering

determined by symbols ki appearing in the sequences)(3cR
(

(10) and)(4cR
(

.
As the result the following form 3 of declaration is obtained:

const

 t1 = y; ↔ k4 {... c6 ...}
 var (12)

q1, q2: 1..t 1; ↔),(2,51,55 kkk

 q3: array [1..t1] of integer; ↔ k6 {... c7 ...}
 q4: integer ↔ k7

Now the symbols ki appearing in the sequence (10) are replaced by
symbols t1 and q1, q2, q3, respectively, as follows:

),(),,,(),,()()(233611235113433 qqcrqtqcrtqcrcRcR =→ &
(

 (13)

Then the symbol r i appearing in the sequence (13) are replaced, in
accordance with Table R , by patterns of opcodes. Next the symbols mj
appearing in patterns of opcodes are replaced by the real operands, qi or tj,
appearing in the sequence (13). According to this the following
transformation is realized:

r4 → m1 := 2 to m2 → q1 := 2 to t1

 16

r4 → m1 := m2 downto m3 → q2 := t1 downto q1 (14)
r6 → m1 [m2 – 1] > m1[m2] → q3[q2 – 1] > q3[q2]

The obtained opcodes with real operands are inserted into algorithm
structure derived from the group e3 of structural components fi. These
opcodes are inserted in the places denoted by symbols op or opp.

In similar way as above the declaration associated with opcodes included
in the small functional parts of algorithm with semantic meaning c19 and c20
is constructed. From the symbolic expressions R’+ (5) and +′K& (6) the
following sequences are derived

])[,,(]),[,()(

),,(),,,(),],[(),()(

811972013811920320

1,101912471,10191148111927191019 21

kkkkcrkkkcrcR

kddcrkkkcrkkkcrkcrcR ii

=

=
(

(

 (15)

Symbols ki included in brackets are translated into structural components of
declaration, on the basis of Table K , Table L and the symbolic expression
L’ + (11). As the result, a fragment of the form 2 of declaration associated
with small functional parts of the algorithm denoted by symbols c19 and c20
is obtained. The obtained fragment has the form as follows:

const
 t = y k4 {... c6 ...}

type
 o = 1..t…… k8
var (16)

q: array [o] of integer k9[k8] {... c7 ...}
q: o k11[k8]
q: integer k7 {... c22 ...}
q: real k10,1 {... c23 ...}

The form 2 of the declaration (16) obtained for c19 and c20 is compared with
the form 3 of the declaration (12) obtained for c3 and c4 to construct one
common declaration. Notice that some declaration in a program are defined
by comments. During knowledge acquisition the computer assigns to each
comment a symbol cw of its semantics. For example, the places of
comments in the declaration (12) and (16) have been denoted by symbol cw
in brackets. The comments included in declarations are used by the
computer for constructing the common declaration. For constructing the
common declaration some rules are applied. At first, the sequence of
symbol ki appearing in description of the form 2 of the declaration (16) is
compared with the form 3 of the declaration 12. According to this, the
following sequences are compared:

k1, k4(c6), k3, k5, k6(c7), k7 for (12)

 17

k1, k4(c6), k2, k8, k3, k9(c7), k11, k7(c22), k10,2(c23) for (16)

where symbols k1, k2, k3 denote words const, type, var, respectively. On the
basis of some rules the following common sequence is obtained:

k1, k4(c6), k3, k6(c7), k5, k7,1, k7,2(c22), k10,1(c23) (17)

The common declaration derived from the sequence (17) obtains the
following form:

const
 t1 = y k4

type o1 = 1..t 1 – k8
var (18)

q1, q2: 1..t1 k5
q3: array [1..t1] of integer k6
q4: integer k7,1
q5: integer k7,2
q6: real k10,1

After inserting the derived operation codes into the algorithm structure (4)
the computer obtains the following form of new algorithm:

begin
 for q1 := 2 to t1 do {... c3 ...}

begin
 for q2 := t1 downto q1 do

 if q3 [q2-1] > q3 [q2] then
begin {... c4 ...}

q4 := q3 [q2-1];
q3 [q2-1] := q3 [q2];
q3 [q2] := q4;

end
end

begin {... c19 ...}
q5 := 0
for q1 := 1 to t1 do

begin {... c20 ...}
read (q3 [q1])
q5 := q5 + q3 [q1]

end
q6 := q5/t1
writeln (‘average is’: q6)

end
end

This algorithm together with the declaration (18) create a program, which
has been derived from pieces of knowledge acquired by the computer from

 18

some programs g1 and g3. This program sorts the list of numbers in
increasing order and computes the average of those numbers.

5 Conclusions

In this paper a method of synthesis of a new program from small pieces of
knowledge acquired from another different programs is introduced. The
presented the automatic programming system can be applied in any
microcomputer. It is very helpful for a man who solves diverse scientific
problems using the same formal tool, e.g. using symbolic expressions
representing graphs. In this case the same pieces of knowledge will be
appeared in many programs from which the knowledge is acquired to the
KB but sequence of these pieces in every program will be different. Under
notion “small piece of knowledge” we mean small functional part of
algorithm indicated by the comment. The presented automatic
programming system is peculiarly very useful in real-time systems when we
have to solve urgent problem, but we have not time to write a program to
solve this problem by the computer.

References

1. Cooke D.E., Gates A., “On the Development of a Method to Synthesize
Programs from Requirement Specifications”, International Journal of
Software Engineering and Knowledge Engineering 1 (March 1991),
pp. 21-38, World Scientific Publishing Co., New Jersey, 1991.

2. Kazimierczak J., “Acquisition and Representation of Knowledge on the
Level of Programming Language for Automatic Programming”,
Proceedings of the ACM Computer Science Conference'93,
Indianapolis, pp. 221-228, ACM Press, New York 1993.

3. Kazimierczak J., “Knowledge Representation on the Level of Natural
Language for Purposes of Automatic Programming”, Proceedings of
the 7th Intern. Conference “Software Engineering and Knowledge
Engineering”, SEKE'95, Rockville, Maryland, USA, KSI Press, Skokie
1995.

4. Kazimierczak J., “Representation of Knowledge for Purposes of
Automatic Programming”, Proceedings of the 9th Int. Symp. on Artificial
Intelligence “ISAI 1996”, pp. 240-249, Cancun, Mexico, ITESM Press,
Monterrey 1996.

5. Kazimierczak J., “Splitting Natural Language Sentences into Groups of
Words for Purposes of Automatic Programming”, Report PRE, No.
37/92, I-6, Wroclaw University of Technology Press, Wroclaw 1992.

6. Kazimierczak J., “Acquisition of Knowledge and its Representation to
Achieve the Ability of Computer to Automatic Programming”,
Proceedings of the Intern. Conf. on Artificial Intelligence, Volume II, pp.
819-826, Las Vegas, Nevada, 2002, CSREA Press.

7. Rich Ch., Waters R.C., “The Programmer’s Apprentice”, Addison-
Wesley Publishing Company, Reading, Massachusetts 1990.

