STUDIA INFORMATICA
Nr 2(9) Systemy i technologie informacyjne 2007

Coherent synthesis of heterogeneous system —
an ant colony optimization approach

Mieczyslaw DrabowsKi

! Faculty Electrical and Computer Engineering,
Cracow University of Technology,
Warszawska 24, Krakow 31-155, Poland

Abstract. The paper presents an innovative approach torgpltvie problems of computer system
synthesis based on ant colony optimization methidd. describe algorithm realizations aimed to
optimize resource, selection and task schedulingyell as the adaptation of those algorithms for
coherent synthesis realization. We then presen¢ctsel analytical experiments proving the
correctness of the coherent synthesis conceptralichie its practical motivations.

Keywords. Synthesis, scheduling, task, selection, resowherent, ant colony, branch & bound

1 Introduction

The synthesis of computer systems consists in #hectson of hardware
(choice of resources) and allocation of specifigksa(functions of the system) to
these resources, in order to find the parametets bb hardware and software,
which give the best solutions of the synthesiss,Idepending on the desired crite-
rion, either the shortest time of completion of taltks, or the cheapest (the most
economical) realization of those tasks. You magkhof the synthesis as an answer
to the question — what would the parameters ofkare have to be, for the problem
described by the graph of tasks to be performeedgasr cheapest?

You can assume that each task performed by resoiscdependent on the
previous tasks and enables execution of the foligwiasks. Tasks are presented as
directed acyclic graphs, each vertex of which regmés the task and the edges —
interrelations.

The problem of computer systems synthesis requhieslist of available
hardware resources — the set describing resouredsch can be used for the syn-
thesis of target system. This set may contain sesburces as for example:

¢+ processors (general and dedicated),

¢ operating memory,

¢+ mass storage,

¢+ communication ports, etc.

10 Drabowski M.

The process of synthesis is based on iterativegoiures execution:

+ system analysis,
resources partitioning,
tasks scheduling
solution evaluation,
system parameters modification.

Thanks to this approach, we are able to analypedgress every solution we
obtain, while the algorithm is trying to find sdluts which give better results than
the current ones. Furthermore, you may “teach”algerithm to choose only these
solutions, which meet our criteria (thus, besid#liing the principles of depend-
ent tasks scheduling, you can expect finding smytivhich requires the least re-
sources, etc.).

The whole algorithm can be then presented in tha faf diagram:

+ specification of system assumptions
definition of the set (libraries) of available resces
definition of the set (functions) of the system
definition of the set of system parameters
modifications of system parameters
analysis of system parameters in relation to assonmg
resources partitioning
tasks scheduling
tasks and resources allocation
verification and evaluation of the system obtained

+ definition of the target system.

The synthesis based on two algorithms behavingtally different ways lets
you not only find the (sub-)optimal solution, busa verify this solution by algo-
rithm searching through all possible solutions.

Presented algorithms let us find the solution,ditthe same time they let us
evaluate the algorithms themselves. This way wetethmvhich of the algorithms is
faster in finding better and better solutions, whilgorithm is more tolerant to
modifications of system parameters, and also wbfdihem enables fast adaptation
to new parameters, while the system changes dya#lyic

If we assume that solution is changing dynamicatlyould be a big obsta-
cle for greedy algorithms, because modificatiorsiofjle parameter (giving eventu-
ally better parameters) forces another verificatibthe full set of solutions.

In our approach, the obtained solutions are consitiallowing for the fol-
lowing parameters:

+ number of processors and the cost of computing powe

+ size and cost of operational memory,

+ size and cost of mass storage,

+ the time needed for scheduling the tasks.

To evaluate obtained solution, we use the methodveifjhted average:
evaluated are all parameters considered during amelysis with appropriate
weights; if the final grade of the new solutiorbistter than the grade of the previous
one, the new solution is being saved.

L4
L4
L4
*

* & & & o o o o o

Optimization

Coherent synthesis of heterogeneous system... 11

2 Adaptation of ant colony optimization heuristic algorithm
to solve the problem of synthesis

The Ant Colony OptimizatiofACO) algorithm is a heuristics using the idea
of agents (here: ants) imitating their real behavigasing on specific information
(distance, amount of pheromone on the paths, @tts)evaluate the quality of paths
and choose between them with some random probafihié better path quality, the
higher probability it represents). Having walkeeé thhole path from the source to
destination, ants learn from each other by leagitgyer of pheromone on the path.
Its amount depends on the quality of solution chdsg agent: the better solution,
the bigger amount of pheromone is being left. Tiherpmone is then “vapouring” to
enable the change of path chosen by ants anddet thnore the worse (more dis-
tant from targets) paths, which they were walkiagier.
The result of such algorithm functioning is not yoifinding the solution.
Very often it is the trace, which led us to thigusion. It lets us analyze not only a
single solution, but also permutations generatiifier@nt solutions, but for our
problems basing on the same division (i.e. taskssaheduled in different order,
although they are still allocated to the same Bsoes). This kind of approach is
used for solving the problems of synthesis, whereamly the division of tasks is
important, but also their sequence.
To adapt the ACO algorithm to synthesis probleims,following parameters
have been defined:
= Number of agents (ants) in the colony,
= Vapouring factor of pheromone (from the range {; 1
The process of choosing these parameters is impata should consider that:
= For too big number of agents, the individual cyafealgorithm can last quite
long, and the values saved in the table (“levelpltdromone”) as a result of
addition will determine relatively weak solutions.

= On the other hand, when the number of agents isneal, most of paths will
not be covered and as a result, the best soluéiodong be uncovered.

The situation is similar for the vapouring factor:

= Too small value will cause that ants will quickffipfget” good solutions and as
a result it can quickly come to so callsthgnation(the algorithm will stop at
one solution, which doesn’t have to be the bes}.one

= Too big value of this factor will make ants dortos analyze “weak” solutions;
furthermore, the new solutions may not be pushietime, which has passed
since the last solution found will be long enoudhs(the values of pheromone
saved in the table will be too big).

The ACO algorithm defines two more parameters, which tai palance be-
tween:

= o — the amount of pheromone on the path, and

= B —“quality” of the next step.

These parameters are chosen for specific task.\ildys for parameters:

= o> f there is bigger influence on the choice of pathictv is more often

exploited,

Studia Informatica 2(9)2007

12 Drabowski M.

= o < there is bigger influence on the choice of pathicW offers better

solution,

= o = there is balanced dependency between qualityeptth and de-

gree of its exploitation,

= o = 0 there is a heuristics based only on the gualitpassage between

consecutive points (ignorance of the level of pheyoe on the path),

= B = 0 there is a heuristics based only on the amofipheromone (it is

the factor of path attendance),

» o= =0 we'll get the algorithm making division everdyd independ-

ently of the amount of pheromone or the qualitgafition.

Having given the set of neighborhodd of the given pointi, amount of
pheromone on the pathand the quality of passage from poinib pointj as an
element of the tablg you can present the probability of passage fromtpdo j as.
Formula evaluation of the quality of the next stefhe ACO algorithm:

[81°[m)° .
Z[E] [,7”],8 when j [Nik
pilj(= 10N,
0 else

In the approach presented here, the ACO algoritbes agents to find three
pieces of information:

= the best/the most beneficial division of taskisMeen processors,

= the best sequence of tasks,

= searching for the best possible solution for thegidistribution.

Agents (ants) are searching for the solutions whiehthe collection result-
ing from the first two targets (they give the uréggolution as a result). After sched-
uling, agents fill in two tables:

= two-dimensional table representing allocation sktto the given proces-

sor,

= one-dimensional table representing the sequenagafng the tasks.

The job of agent involves:

1. collecting information (from the tables of alloeat) concerning alloca-

tion of tasks to resources and running the tasks,

2. drawing the next available task with the probapiipecified in the table

of task running sequence,

3. drawing resources (processor) with the probabdjtgcified in the table

of allocation the tasks to resources,

4. task schedule realization,

5. it was the last task? (if not go to 2, if so thed)e
To evaluate the quality of allocation the task togessor, the following method is
being used:

1. evaluation of current (incomplete) scheduling,

2. allocation of task to the next of available resestc

Optimization

Coherent synthesis of heterogeneous system... 13

3. evaluation of the sequence obtained,
4. release the task,
5. was it the last of available resources? (if not@a, if so then end).

The computational complexity of single agent pradsspolynomial and de-
pends on the number of tasks, resources and tiftasks beginning.

After initiating the tables (of allocation and seque) for each agent, the al-
gorithm starts the above cycle, after which thelation of solutions takes place.
Having completed the particular number of cyclbs, parameters are being updated
and algorithm continues working:

1. initiation of tables of tasks running sequence altmtation of tasks to re-

sources,

2. completing the cycle of analysis for each agent,

3. evaluation of the best solution found in currentley

4. for each agent — basing on the best solution —tupglthe tables of tasks

running sequence and allocation of tasks to ressurc

5. isit the last cycle? (if not go to 2),

6. optimization/customization of system parameters.

3 Customization of the Branch & Bound greedy algorithm
to synthesis problems solving

Branch & Bound (B&B) algorithm is a greedy algorittbrowsing the set of
solutions and “pruning” these branches, which gigse solutions than the best
solution already found. This kind of approach ofsggnificantly reduces the number
of solutions, which must be considered. Howevahaworst case scenario, “prun-
ing” the branches is impossible and as a resudt,B&B algorithm analyzes the
complete search-tree. Both formi3HS andBFS of B&B algorithm were used for
synthesis. It let us comprehend the problem ofyamalof three different kinds of
optimization (cost, power, time) without discredgiany of the problems.

B&B algorithm investigates the problem by:

+ choice of the task,

+ definition of initial time to which you can scheduhe task,

+ choice of processor on which the task will be alted.

Because allocating the chosen task in the firstlaha time unit or on the
first available processor is not always the bestjdall available time units and
processors are being considered. As a result, latile complexity of algorithm
changes exponentially when new tasks are addedlgngmial after addition of
new processors.

Although B&B algorithm operation process is relativ simple, the number
of solutions, which must be examined, is huge.

Studia Informatica 2(9)2007

14 Drabowski M.

4 Calculative experiments

Because one algorithm creates unlimited cycle hadther one takes a very
long time to finish in many cases, the results giirethe tables present state of the
system after not more than three minutes of arml\Bepending on the solution
criterion, there were used both forms of B&B — D&l BFS — for the algorithm to
be able to find a good solution in time.

Each solution given bynt Colonyalgorithm will be graded on the basis of
solutions found byBranch & Boundalgorithm.

criterions
reS U IE & Bcriterion

quality = 100%———
criterions . &mn= reSultcocieron

Formula for the quality of obtained solution isléating.

The final grade is influenced only by these paransetwhich were being op-
timized by algorithms: cost, power and time of stlisng. The total quality of pro-
posed system includes all three parameters (sdhgdiiine, cost and power con-
sumed by the system):

+ the quality higher than 100% means that ACO algorihas found better

solution than B&B,

+ the quality equal 100% means that both algorithmgehfound equally

good solutions,

+ the quality less than 100% means that B&B algaorities found better

solution.

The correctness of scheduling proposed by ACO a&B Blgorithms was
verified on the basis of the following examples.

The algorithms were given the following resourcpeocessors, operating
memory, mass storage.

Characteristic Processors:

Id Computation conZﬂvr\;T)rtion Power consgmption
power) (non active)
(active)
Processor 1 1 100 10
Processor 2 2 120 12
Processor 3 4 150 15
Processor 4 8 200 20
ASIC 1 1 80 8
ASIC 2 2 110 11
ASIC 3 4 150 15
ASIC 4 8 180 18

Optimization

Coherent synthesis of heterogeneous system... 15

Power consumption optimization

Time, which has passed until solution was found #nedparameters of the
target system are presented in the table:

Number of Ant Colony Branch & Bound Quality
tasks Time | Length | Cost | Power | Time | Length | Cost | Power %
5 2.0 7.5 3.00 900 7.5 7.5 3.0p 900 100/0
10 25 7.5 9.50 1892 21. 10 5.00 1930 102.0
15 42.5 8.0 10.000 2839 0.d 30 2.00 3000 105.6
20 325 12.5 10.00 3847 0.0 40 2.00 4000 104.1
25 8.5 125 11.50 477@ 0.d 50 2.00 5000 104.8
30 11.0 15.0 16.50 5996 0.0 60 2.00 6000 10Q.0
35 20.5 15.0 19.00 6975 0.0 70 2.00 7000 100.3
40 32.0 20.0 19.00 7994 0.0 80 2.00 8000 10Q.1
45 12.0 16.5 19.00 8989 0.0 90 2.00 9000 10Q.1
50 22.0 21.3 19.00 9971 0.0 100 2.00 10000 100.3
55 35.5 24 19.000 11014 0.0 110 2.00 11Q00 99|19
60 50.5 23.8 19.00 1203p 0.4 120 2.00 12000 998

The above example shows, that ACO algorithm hasathantage over the
B&B algorithm in the wide interval. The first onévgs better scheduling in many
cases. that apart from very good power consumgamameters of the systems pro-
posed by ACO algorithm, their quality is much bettean the quality of systems
proposed by B&B algorithm: the time of schedulisgnany times shorter and their
price is only a little higher.

Cost of the system optimization

Time, which has passed until solution was found tedparameters of the
target system are presented in the table.

Number of Ant Colony Branch & Bound Quality
tasks Time | Length | Cost | Power | Time | Length | Cost | Power %

5 0.0 10 2.00 1000 0.0 10 2.00 1040 10
10 0.0 20 2.00 2000 0.0 20 2.00 2000 100
15 0.5 30 2.00 3000 0.0 30 2.00 3000 100
20 1.0 40 2.00 4000 0.0 40 2.00 40Q0 100
25 15 50 2.00 5000 0.0 50 2.00 5000 100
30 4.5 60 2.00 6000 0.0 60 2.00 6000 100
35 6.0 70 2.00 7000 0.0 70 2.00 70Q0 100
40 6.5 80 2.00 8000 0.0 80 2.00 80q0 100
45 11.5 90 2.00 9000 0.0 90 2.00 9000 100
50 20.0 100 2.00] 10000 0. 100 2.00 10Q00 100
55 33.0 110 2.00| 11000 0.0 110 2.00 11Q00 100
60 42.5 120 2.00] 12000 0.0 120 2.00 12Q00 100

This example shows that ACO algorithm can findgbkition as good as the
greedy algorithm, despite the fact that this soluis an extreme case of scheduling
(all tasks are allocated at the first processor).

Studia Informatica 2(9)2007

16 Drabowski M.

The cost of proposed solution results from the, fHwit all tasks were allo-
cated to the first processor (with computing poegual 1) and each task declares
using 1MB of operational memory and 1MB of massaie (as a result we get the
cost of ~2.00099).

Scheduling time optimization

Time, which has passed until solution was found #edparameters of the target
system are presented in the table.

Number of Ant Colony Branch & Bound Quality
tasks Time | Length | Cost | Power | Time | Length | Cost | Power %
5 0.0 15 25.00 1004 0.5 15 24.00 98P 100
10 0.0 25 30.51] 2001 0.0 25 30.51 2001 10D
15 0.0 4.5 30.51] 3128 0.0 4.5 30.51 3094 10D
20 0.5 6.0 30.51] 4173 0.0 6.0 30.51 4173 10D
25 1.0 7.9 30.51] 5282 0.0 7.9 30.51 5282 10D
30 15 10.0 30.51] 6373 0.0 10.0 30.p1 63P6 100
35 2.0 11.3 30.51] 7448 0.5 11.3 30.p1 7448 100
40 25 135 30.51] 8602 0.0 13.5 30.p1 86D9 100
45 3.0 15.0 30.51] 9636 0.0 15.0 30.p1 9614 100
50 4.5 16.5 30.51] 10698 0.0 16.5 3051 10693 100
55 6.5 18.0 30.51] 11772 0.0 18.(4 3051 11772 100
60 7.0 20.3 30.51] 12939 0.0 20.(3051 12872 98.5

This example shows that ACO algorithm is able twl fvery good or even
optimal scheduling in the reasonable time. Whemtimaber of tasks is smaller than
the number of processors, this time is shorter thantime needed by B&B algo-
rithm. With the large number of tasks, the ACO aillpon was unable to find sched-
uling equally good to the one found by B&B algonithbut its offers were very
similar.

Optimization of scheduling time and system cost

Time, which has passed until solution was found #nedparameters of the
target system are presented in the table.

Number of Ant Colony Branch & Bound Quality
tasks Time | Length | Cost | Power | Time | Length | Cost | Power %
20 59.0 10 15 4007 0.0 6.0 30.50 4173 1317
25 60.0 9.0 20.50 5054 0.4 7.9 30.51 5281 118.3
30 12.5 9.0 19.000 6057 0.q 10.4 3051 63p4 124.5
35 16.0 12.5 19.00 1004 0.5 11.3 3051 7448 125.4
40 15.5 15.0 19.00 8014 0.0 13.9 3051 8568 125.3
45 42.5 16.5 19.00 9011 0.0 15.4 3051 96p4 125.7
50 26.5 18.0 19.0| 10024 0. 16.9 30551 10693 126.1
55 34.5 20.0 19.0 11009 0. 18.(Q 3051 11772 125.3
60 44.0 21.4 19.00 12008 0.4 20. 3051 12872 127.0

Optimization

Coherent synthesis of heterogeneous system... 17

In the multi-objective optimization it is clear th&CO algorithm exceeds the
greedy algorithm B&B in relation to the quality eélutions: solutions proposed by
ACO algorithm are better then the ones propose8&ty algorithm even by 31.7%.

Power consumption and cost of the system optimizain

This is another example of joint optimization, wieve look for the cheapest
and the most efficient system.

Time, which has passed until solution was found tredparameters of the
target system are presented in the table.

Number of Ant Colony Branch & Bound Quality
tasks Time | Length | Cost | Power | Time | Length | Cost | Power %
10 0.5 20.0 | 2.00 2000 0.0 20.0 2.0(2000 100.p
15 3.5 30.0 | 2.00 3000 0.0 30.0 2.0(4 3000 100.0
20 4.5 18.0 | 5.00 3780 0.0 40.0 2.0(4 4000 72.9
25 10.0 22.0 | 5.00 4732 0.0 50.0 2.0(5000 72.8
30 12.5 27.0 | 5.00 5670 0.0 60.0 2.0(4 6000 72.9
35 12.0 20.0 | 10.00 | 6677 0.0 70.0 2.0 7000 62.4
40 27.0 28.0 | 10.00 | 7869 0.0 80.0 2.0 800D 60.9
45 16.5 33.0 | 10.00 | 8835 0.0 90.0 2.0 9000 60.9
50 57.5 32.0 | 10.00 | 9673 0.0 100.0 2.00 10000 61.7
55 43.5 38.0 | 10.00 | 10766 0.0 110.0 2.00 11000 61.1
60 55.5 375 | 1150 | 11822 0.0 120.0 2.00 12000 59.4
10 0.5 20.0 | 2.00 2000 0.0 20.0 2.0(2000 100.p

This example illustrates that ACO algorithm isnétter than greedy algo-
rithms for all kinds of problems. The reason offsweak results is a very difficult
choice for the algorithm between power and costilllistrate the problem we will
try to analyze the scheduling of three first tagksen scheduling the first task
causes some kind of dilemma: you can do this chiedyoe the scheduling will be
longer and at the same time more power consummgp can do this at the higher
cost, but with less power consumption (on the fgstecessor, the task will be com-
pleted sooner). If the algorithm chooses the sequadessor — the choice of slower
processor in the next step will turn out more egpemas well as more demanding,
while staying with the faster one will let us kettye same cost and limit the power
(comparing to the slower processor). Also scheduiime will reduce significantly
(what was presented in the table above). The fjonality of the system is then diffi-
cult to determine during the whole cycle — it isgible to determine only when you
know the total scheduling length (and thus the pasemsumed by system, in other
words — after the end of the whole cycle).

5 Conclusion

Basing on the above research you may say, thaA@@ algorithm is better
suitable for both one- and multi-objective analysEse systems obtained (as a re-
sult of ACO algorithm) even in the worst case wendy insignificantly worse than
solutions obtained by B&B algorithm. Furthermorbke tuse of coherent analysis

Studia Informatica 2(9)2007

18 Drabowski M.

significantly improved the quality of obtained stwduws. In the case of multi-
objective synthesis, heuristic algorithm gave comapke results for optimized pa-
rameters and at the same time, the final gradbeoystems it proposed was much
better. The calculative experiments prove the sapsr of coherent synthesis over
the incoherent synthesis and heuristic algorithues the greedy ones.

The heuristic and genetic algorithms handle thecNiPplete problems much
better than the greedy algorithms. It is becaueg #pproach the problem in a way
that let them pre-analyze the good solutions anuéddiately start the optimization
of bigger number of parameters in the consecutigpss Thanks to such approach,
solutions are being found in the short time andalgerithms do not require addi-
tional modifications to optimize other factors (trany to the greedy algorithms).

Acknowledgment

This work was supported by the Polish Ministry ofeé®ice as a 2007-2010 re-
search project.

References

1. Coffman E. G., Jr., (1976 omputer and Job-shop scheduling thedighn Wiley&Sons,
Inc. New York.

2. Dorigo M., Di Caro G., Gambardella L., M., (1999nt Algorithms for Discrete Optimi-
zation, Artificial Life, Vol. 5, No. 2.

3. Drabowski M., (2004), Coherent synthesis of hetenegpus system — a neural
approachProc. of Atrtificial Intelligence AI’2004session 1V (25).

4. M. Drabowski, K. Czajkowski, (2006)A Tabu Search approadh coherent synthesis of
heterogeneous systeBtudia Informatica, vol. 1/2, 2006, pp. 31-45.

5. Drabowski M., (2006). Coherent synthesis of heteragpus system — an evolu-
tionary approachProceedings of Atrtificial Intelligence StudjesI. 3(26).

6. Drabowski M, Wantuch E., (2006). Coherent concurr@sk scheduling and
resource assignment in dependable computer systsignd In:Int. Journal of
Reliability, Quality and Safety Engineeringl. 13, No. 1, 15-24.

7. M. Drabowski, K. Czajkowski, (2006 Minimizing Cost and Minimizing Sched-
ule Length in Synthesis of Fault Tolerant Multipgesors Systenis:] Parallel
Processing and Applied Mathematic, Springer-Verlag NCS 3911, 2006,
pp. 986-993.

Optimization

