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Parallelization of computations for generating combinations 

Abstract. An effective sequential algorithm and two parallel algorithms for generating  combinations 

without repetitions of m out n of objects, represented by  Boolean vectors, are proposed. One of them 

allows one to calculate starting  and ending  combinations for the subset, generated by  each computing 

processor. The  second algorithm firstly generates short (m-component) vectors on several computing 

processors. After that, by using  special [n/m]-component vectors, it connects the short vectors into n-

component Boolean vectors, each of which containing of  exactly m units.  

Keywords: sequential algorithm, parallel algorithm, Boolean vector, combinations without repetitions, 

combinations with repetitions, parallelization of computations 

1. Introduction     

The combinatorial analysis (combinatorics) plays an important role  in computer  

science due to its many applications when designing discrete computing devices and control 

systems [1]. One of the classic tasks of combinatorics is to generate all the combinations without 

repetitions of n elements taken  m at a time ( (n,m)- combinations ). Matching algorithms have 

been developed, programmed and used in automated systems of designing digital devices and 

other applications [1,2]. Combinations in known algorithms are usually represented as a 

sequence of numbers in the lexicographical order, which is not suitable for some applications. 

In addition, the conventional representation of combinations makes it difficult to parallelize the 

computations. 

For  generating (n,m)-combinations with large n and m, it is more useful  to  represent 

them  as n-component  Boolean vectors, each of which containing of  exactly m units (and n-

m zeros, of course).. 
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At present, to enhance the performance of computations when solving problems of  large  

dimensions (in engineering, mathematics and other disciplines) high-performance 

multiprocessor computing systems (supercomputers, clusters) are used. While paralleling 

solving algorithms of difficult design problems often one needs to parallelize the process 

generating combinations without repetitions. 

Several parallel algorithms for generating combinations without repetitions have been 

proposed [2, 3, 4, 5, 6]. 

In particular,  the algorithms proposed  in [2,3]  are focused on multiprocessor 

associative computing systems, which   use SIMD (Single Instruction Multiple Data) 

architecture. In such systems, information processing comes from associative storage devices, 

where information is selected not  at a certain address, but by its content. In modern 

supercomputers (see TOP 500) instead of SIMD architecture a MIMD (Multiple Instruction 

Multiple Data) architecture is used. 

In addition, an  adaptive algorithm [2] requires arbitrary-precision arithmetic, moreover 

it is necessary to schedule the combinations, that is, to decide when each combination will be 

computed, before the moment where each processor can independently generate its 

combinations subset [4]. 

Unlike the  adaptive algorithm [2],  that uses an arbitrary number of independent 

computing processors  NP  n!/m!*(n-m)!, the parallel algorithm [5]  requires a constant 

number of computing processors. Adaptive algorithms allow to use multiprocessor computing 

systems more  effectively. 

In the paper [4]  an  adaptive parallel algorithm was  presented , where each combination 

is associated with a uniquely determined integer. The numeric representations of (n,m)- 

combinations makes difficult to split a task into subtasks for solving them independently on  

several computing processors (NP  n-m+1). That is why  in the paper [4]  real tests are 

described, where the number of processing processors does not exceed 11. 

In the author's paper [6]  an  adaptive parallel algorithm fог generating  (n,m)- 

combinations presented by Boolean vectors was  presented. Such a submission is more 

convenient for   parallelization of computations, if  compared with the representation of 

combinations by sequences of numbers in the lexicographical order.  The algorithm [6 ] allows 

us to use  NP   2k  working processors, where k [m/2] and k < log2 r, r beind the number of 

planned to generate processors in our cluster. The drawback of the algorithm is that in the 
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corresponding  multi-processor computing system in some nodes the calculations are duplicated 

by calculations,  that are performed in other nodes.  

2. Generating Boolean vectors, corresponding to (n,m)- combinations 

 We will represent an (n,m)-combination ( m-combination  of an n-set ) as an n-component  

Boolean vector A= an…a2a1, where exatly  m components are equal to 1. For example, we can imagine 

the (8,4)-combination  (1,3,4,8), selected from the set {1,2,3,4,5,6,7,8}  by the 8-component Boolean 

vector 10001101, where components a1=1, a3=1, a4=1 and  a8=1. It is obvious,  that n-component 

Boolean vector can be regarded as word of  length n in the alphabet {0,1}. 

To generate (n,m)- combinations it is convenient to assume that the source Boolean 

vector A = an…a2a1 contains m   [n/2] unit components (1s), because a Boolean vector with  

a large number of  1s  we can always replace by the inverted vector. 

In our algorithm the initial combination A0 is written as an n-component Boolean vector 

bm(n) with   m units, located in positions 1,2,...,m. The final combination is written as an n-

component Boolean vector Af = cm(n) with   m units, where the last (leftmost) m components 

are equal to 1. 

The vector A0   (also as Af ) contains one block with m units. The vector Ai, were i  0 

and i   f,  may  contain  few blocks with k units, were 1  k < m. Then one of these blocks will 

call the rightmost block B1.  Except the rightmost block B1,   this vector Ai contains the leftmost 

block units B2. 

Sequential algorithm SAGC(n,m;S) 

1. Write the primary combination A0  = bm(n) in the set S. 

2. For given i  0  and 1 k  m,  find in Ai  the rightmost block B1 with k  units. Units from 

B1 located in positions j, j+1,…,j+k-1, but aj+k =0, where k  1,  j=1 or  j >1 but  a1 = 0, a2 =0,…, aj-1 

=0.   

3. Find in B1 the leftmost 1 and move it to the left by one digit, and all other k -1 units from 

B1 move to the right maximum.  Modernize the vector Ai as follows: aj+k-1 =0, aj+k = 1,  a1 =1, a2 =1,…, 

ak-1 =1. After the modernization we obtain Ai+1 , which we  write in S. 

4. If Ai+1  = Af  = cm(n), move to p. 5. Otherwise, put  Ai+1 := Ai  and move to p.2. 

5. Print the set S. Stop. 
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For example, the (6,3)-combinations generated by SAGC are in S={000111, 001011, 

001101, 001110, 010011, 010101, 010110, 011001, 011010,  011100, 100011, 100101, 

100110, 101001, 101010, 101100, 110001, 110010, 110100, 111000}. 

It is easy to see that our heuristic algorithm SAGC really generates all (n,m)- 

combinations.  

To this end, we note that for each vector from S there is a corresponding  number. The 

number corresponding to the vector Ai+1 is  higher, compared with the number corresponding 

to Ai. Consider the vector  Ai, where aj =1, aj+1 =1,…,aj+m-1 =1 and a1 =0, a2 =0,…,aj-1 =0, aj+m 

= 0, aj+m+1 = 0,…, an =0.  

For this Ai  the corresponding number is equal to 

N(Ai ) =  2j+m-1 +(2j +2j+1 +…+2j+m-2 ).  

The numbers in parenthesis form a geometric progression with the ratio 2. The sum in 

parenthesis equals 2j+m-1 – 2j+1. Thus, the number that corresponds to the leftmost 1 of Ai, is 

greater than the sum of numbers corresponding to the remaining m-1 unit components. 

Naturally, this number is greater than the sum of the numbers corresponding to m-1 units, which 

are located to the right. When the leftmost 1 moves by one digit  to the left, the  corresponding 

to this group number exceeds the sum of the numbers, corresponding to the rest of the m-1 

units, irrespective of their location. Thus, the number corresponding to each regular 

combination Ai+1 is greater than the number corresponding to any of the previous combinations.  

In this way repeating combinations are excluded. 

Next, we show that any possible (n,m) -combinations  can be  generated by using the  

algorithm SAGC. For this purpose it is enough to specify how to build the previous combination 

for each considered combination (excluding the primary combination). 

We  have the following options: 

1) the vector  Ai  contains the  block B0 with  m  units  located the rightmost  (primary 

combination), the leftmost (final combination) or in the middle of Ai;  

2) the vector  Ai  contains the rightmost block B1 with  k < m   units  located the 

rightmost or in the middle of Ai.  

In the case 2), we have  three subcases:  

2a) B1 with  k < m  units is located on the rightmost and between  its the leftmost 1  and 

the rightmost 1 of next  (on the left) block  units  B2 is located only one zero, i.e. a1 =1,…,  ak 

=1,  ak+1 =0, ak+2 =1; 
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 2b) B1 with  k < m  units is located on the rightmost and between  its the leftmost 1  

and the rightmost 1 of next block (on the left)  B2 with  t  1 units are located l >1 zeros, i.e. a1 

=1,…,  ak =1,  ak+1 =0,…, ak+l =0, a k+l +1 =1,…, a k+l +t =1;  

2c) B1 with  k < m  units is located in the middle of Ai.  

In the case 1),   Ai-1  differs from Ai  as follows:  the rightmost  1 from B0  is moved 

with one digit   to the right. 

In the case 2a), Ai-1  differs from Ai  as follows:  the rightmost  1 from the block B2 is 

moved by one digit   to the right, i.e. in Ai we have ak+1 =0, ak+2 =1 but in Ai-1  we have ak+1 =1, 

ak+2 =0. 

In the case 2b),  Ai-1  differs from Ai  as follows: the rightmost  1 from the block B2 is 

moved by one digit   to the right (al =1) and all  1s from B1 are moved by k digits  to the left,  

i.e. in Ai-1  we have  al-1 =1,…,  al-k =1, al-k-1 =0,…, a1 =0. 

In the case 2c),  Ai-1  differs from Ai  as follows: the rightmost  1 from the block B1  is 

moved by one digit   to the right. 

The availability of ways to build for each combination of the previous combination one 

proves the fact that using the heuristic algorithm SAGC we can generate all possible (n,m)-

combinations. Thus,  /S/= Cn
m. 

3. Parallelization the process  of generating  combinations  

3.1.  Generating Boolean vectors of length of a machine word    

The rules of building the previous combination for each regular one help us to parallelize 

the process  of generating the  (n,m)-combinations on q>1 processes.   

To this end, the control processor  defines the starting Aj,0  and ending Aj,k combinations 

for the subset Sj , generated by  each computing processor  pj, where   1 j q. 

For example, it is easy to show the method to parallelize  the generation of (n,m)-

combinations on q = m processes.  

To parallel the computations with the help of our parallel algorithm PAGC1 (n,m;S), 

it is necessary to perform the following three steps:  

1)  The control processor p0, using the algorithm 

 A1(n,m ; A1,0 , A2,0 , …, Am,0 , A1,k , A2,k,…, Am,k  ), assigns the  previous combinations Aj,0: 
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 A1,0  with  m  units,  located on the rightmost, for  the computing processor  p1; A2,0  with  m  units,  

located on the positions i, i-1, …, i-m+1, where  i=[(n-m)/2]+m+1, for  the computing processor  p2; 

…;  Aj,0 with  j-2  units,  located in the  positions n, n-1,…,n-(j-3),  and all other m-(j-2) units,  located 

on the rightmost for  the computing processor  pj  with  3 j m. 

Then  p0 assigns ending combinations Aj,k  as Boolean vectors: 

A1,k  with  m-1  units,  located in the positions i, i-1,…, i-m+2, with  i=[(n-m)/2]+m+1,  with one 0, 

located in the position i-m+1, and with one 1, located in the position i-m,  for  the computing processor  

p1; A2,k  with  m  units, located in the positions n-1, n-2,…, n-m, for the  computing processor  p2; …; 

Aj,k   with j-2  units, located in the positions  n, n-1,…,n-(j-3), where 3 j m-1,  with one 0, located in 

the position n-j+2,  and with m-(j-2) units,  located  in the positions n-j+1, n-j, …, n-m-1, for the  

computing processor  pj , where  3 j m-1; 

 Am,k  with m  units, located in  leftmost positions, for  the computing processor  pm. 

For example, for n=10, m=4 we have A1,0   = 0000001111,  A1,k =0011101000, A2,0   = 

0011110000,  A2,k =0111100000, A3,0   = 1000000111,  A3,k =1011100000, A4,0   = 1100000011,  

A4,k =1111000000. 

2) Then each computing processor pj , by using the algorithm A2(Aj,0, Aj,k; Sj), i.e. SAGC,   

generates (n,m)-combinations, writes it  in the set Sj, where j{1,…,m}, and sends the results to the 

control processor p0.  

3) The control processor p0, by using the algorithm A3(S1, S2,…, Sm ; S), sums the sets (S1  

S2 … Sm = S) and ends the generation of all the (n,m)-combinations. 

It is easy to suggest a method to parallelize the process of generating (n,m)-

combinations on q > m processes.  

For maximum parallelization we propose the following method to build initial 

combinations of subsets for generating by computing processors. 

Let us build   the Boolean vectors  Aj  containing two blocks of units: the rightmost 

block B1 with  j=m-k   units; the leftmost block B2  with  k  m-2   units,  located in  the  digits 

n,n-1,…,n-(k-1), where k  {0,1,...,m-2}.  

First, we build n-m Boolean vectors for B1  with  m  units: 

A1, where the leftmost 1  of the rightmost block B1 is  located  in the digit m; 

 A2, where the leftmost 1  of the rightmost block B1 is  located  in the digit m+1;...; 

 An-m, where the leftmost 1  of the rightmost block B1 is  located  in the digit n-1. 

Then, we build n-m Boolean vectors for B1  with  m-1  units: 

An-m+1, where the leftmost 1  of the rightmost block B1 is  located  in the digit m-1;  
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An-m+2, where the leftmost 1  of the rightmost block B1 is  located  in the digit m;...;     A2(n-

m), where the leftmost 1  of the rightmost block B1 is  located  in the digit n-2. 

At last, we build n-m Boolean vectors for B1  with  j= m-k=2  units, where the leftmost 

1s  of rightmost blocks B1 are  located  in digits: 2, 3,…,n-k-1.  

For each rightmost block B1 with j units, where j  {2,…,m}, we can build n-m such 

n-component Boolean vectors. 

Thus, our method  allows one to build (n-m)*(m-1)  n-component Boolean vectors. 

However, not every one of these vectors is appropriate as an initial combination  of  the 

subset Sj  for  generation by  some computing processor pj, where   1  j  (n-m)*(m-1), 

according to our method. 

As  initial combinations are not suitable  the following vectors: 

1) The vector Aj, containing B1 with  m  units, located in the digits n-1, n-2 ,…, n-m; 

2) The vector Aj, containing B1 with  m-k   units, and  the  leftmost block B2  with  k  

units, located in the digits n, n-1,…, n-k+1, such that   between  it’s the rightmost 1 and the 

leftmost 1 of B1 there is  only one zero. 

Every  vector  with properties  described above  is not suitable as the initial combination 

of a subset, for generation by  one of computing  processors according to our method,   since  

this subset has the cardinality equal to 1.  

Therefore, the vectors with described properties we propose to use as final combinations 

Aj,k of Sj. For  Aj,k  we build  the initial combination Aj,0  as follows. The leftmost block  B2  

with  k  units in Aj,0  coincides with B2 from Aj,k  , one 1 is located in the digit n-k-1, but the 

other  m-k-1 units (from B1  in Aj,0  )  are located in the digits a, a-1, …, a-(m-k-2), where a 

=(n-k-1) - ](n-m)/2[, k  {0,1,…,m-3}.  

Notice, that the vector Aj,0  with two 1s in the rightmost block B1 and    m-2  units in 

the  leftmost block B2, located in the digits n, n-1,…, n-k+1, such that   between  it’s the 

rightmost 1 and the leftmost 1 of B1 is located only one zero, may be used as an initial 

combination of the last subset of combinations. 

For each initial combination, built by our method,  the control processor can easily 

assign the final combination. 

For example,  in the case n=9, m=4, we have: A1,0  = 000001111, A1,k  = 000011101, 

A2,0  = 000011110, A2,k  = 000111010, …, A4,0  = 001111000, A4,k  = 010011010,  A5,0  = 

010011100, A5,k  = 011110000,…, A9,0  =100111000, A9,k    = 101001010, A10,0  = 101001100, 

A10,k = 101110000,…, A15,0    = 110110000, A15,k    = 111100000. 
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Thus, the algorithm PAGC1 allows to parallelize the generation of (n,m)-combinations 

on (n-m)*(m-1) processes. 

The ease summation of the results  is one of the advantages of the described approach. 

The advantages of the proposed approach is also the possibility to parallelize  the  calculations 

on (n-m)*(m-1)  processes.  

The parallel algorithm PAGC1 is  effective  for generating of (n,m)-combinations when 

n does not exceed the size of  one  machine word. 

Modern processors general purpose computers usually use machine words with  32 or 

64 bits.  

Therefore, we propose  a different approach for  generation of (n,m)-combinations with 

large n and m. 

3.2. Reduction of the problem of generating (n,m)-combinations to tasks of generating 

short vectors 

 The task  generating the (n,m)-combinations represented by  Boolean vectors can be 

reduced to the solution of several tasks generating short Boolean vectors. To this end, we can 

divide an n-component Boolean vector into s = [n/m] parts, each of the length k = m, except 

the rightmost. The  length  of the rightmost part of an n-component Boolean vector is equal to 

ks=n-k(s-1). Each of short Boolean vectors contains ij  m units. 

The sum of the 1s in all s parts must satisfy the condition 

 i1 + i2 +…+ is = m.                                                                       (*)                                                             

We can generate the short (k-component and ks-component) vectors in parallel on several  

(not more than 2m) processors working independently. The number of 1s in each of these 

vectors varies from 0 to m. 

If  ks= k=m, it’s  enough  to generate only ∑ ௞ܥ
௜௠

௜ୀ଴ 			  short vectors. These vectors we can 

place in sets S0(k), S1(k),…, Sm(k) , where the set Si(k) contains  vectors,    each of which 

contains exactly i 1s. It is obvious, that | Si(k)| = Ck
i.  The set S0(k) consists of one vector, 

whose all k  components are equal to 0. Similarly, the set  Sm(k) consists of one vector, whose 

all k components  are equal to 1. 

Each set Si(k) of short vectors (excepting S0(k)  and Sm(k)) can be generated by using the 

sequential algorithm SAGC for generating (k,i)-combinations on one of m-1  processors p1 

,p2,…,pm-1.  
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If  ks k=m, still m processing processors are required for generating m sets  of ks-

component vectors Si(ks), where |Si(ks)|= Cks
i  and  i  {0,1,…,m}. Each vector from  Si(ks) 

contains exactly i units. In the case  ks k=m, it is required to generate ∑ ௞ܥ
௜௠

௜ୀ଴ 			 m-component 

vectors and  ∑ ௞௦ܥ
௜௠

௜ୀ଴   short vectors with  ks components, where i  {0,1,…,m}. 

After completing  the generation  of short  Boolean vectors, the latest have to be merged 

into n-component Boolean vectors, each of which containing exactly m  units. 

 The easiest way to combine short vectors in an n-component we have when s = 2. 

In this case, for even n we have  k=ks =m= n/2, and for odd n  we get k=[n/2],  ks=n-k.  

To merged the short vectors into n-component Boolean vectors  we perform  the operation  

of the Cartesian product of sets Si(k) and  Sj(ks),  such that i+j=m. 

The number of (n,m)-combinations, that are generated in this way, is computed by the 

formula 

௡௠ܥ ൌ ෌ ௞ܥ
௠ି௜ ∗ ௞௦ܥ

௜ 	
௠

௜ୀ଴
. 

Thus you can generate (n,m)-combinations when ks does not exceed the size of one machine 

word and m  [n/2]. 

To generate (n,m)-combinations with large values n and m we can divide corresponding  

n-component Boolean vectors into s  3 parts. 

In the case s > 2, to combine short vectors in   an n-component  vector, a special connecting 

s-component vector t=tsts-1…t1  is required, where the component tj  is equal to  ij,  ij  

{0,1,2,…,m},  j  {1,2,…,s},   i1 + i2 +…+ is = m.  

Easily seen that the problem of generation the connecting s-component vectors, satisfying 

the condition (*),  can be reduced to the known problem  generating of the options distribution 

of  m objects (“balls”) into s categories (“urns”),  for which we  can use the well-known 

algorithms generating combinations with repetitions [1].  

So, in the case s = 3, m = 4,  all combinations with repetitions are enumerated  in the 

following  set {1111, 1112, 1122, 1222, 2222, 1113, 1123, 1223, 2223, 1133, 1233, 2233, 1333, 

2333, 3333} and  the  corresponding connecting 3-component vectors, satisfying the condition  

i1 + i2 + i3 = 4, are enumerated in the following set  {400,310,220,130,040, 301,211,121,031, 

202,112,022, 103,013,004}. 
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To generate the set S of all connecting s-component vectors, satisfying the condition (*),  it 

is convenient to use the algorithm proposed below.  

Sequential algorithm SAGCV(s,m;S) 

1) The primary vector V0, where i1 = m, i2 = 0, …, is = 0,  write in the set S. 

2) To get the next vector V’=i’si’s-1…í’1, find in the previous vector V=isis-1…í1  the 

leftmost component tj with ij   0, where j < s,  and modify V.  We have i’t = it  for 

t{1,…,s-1},  t  j, t  j+1 and i’j = ij -1, i’j+1= 1.    Then  write V’ in the set S.  

If  j+1 = s, transition to p. 3. Otherwise, move to the p. 2.  

3) To get the next vector V’, find in the previous vector V the leftmost tj with ij  0,  

where j  < s. If j=s-1, transition to p. 4. Otherwise,  modify V:   

i’t = it  for t{1,…,s-1},  t  j, t  j+1 and i’j = ij -1, i’j+1= is +1, i’s= 0.     

Write V’ in the set S and move to p. 2. 

4) To get the next vector V’,  modify V: i’t = it  for t{1,…,s-2},  t  s, t  s-1 and i’s-

1:= is-1 -1, i’s:= is +1.  Then  write V’ in the set S.  If i’s= m, move to p. 5.  

If i’s-1 =0, transition to p. 3. Otherwise, move to the p.  4.  

5) Print the set S. Stop. 

For example, all connecting 4-component vectors, satisfying the condition i1 + i2 + i3+ i4 = 

4, generated by SAGCV are in S= {0004, 0013, 0103, 1003, 0022, 0112, 1012, 0202, 1102, 

2002, 0031, 0121, 1021, 0211, 1111, 2011, 0301, 1201, 2101, 3001, 0040, 0130, 1030, 0220, 

1120, 2020, 0310, 1210, 2110, 3010, 0400, 1300, 2200, 3100, 4000}. 

The algorithm SAGCV really generates all connecting s-component vectors, satisfying the 

condition (*). 

It is clear that repeating combinations are excluded. 

Next, we show that any of  possible connecting s-component vectors ( satisfying the 

condition (*)) can be generated by using the  algorithm SAGCV. For this purpose, it is enough 

to specify how to build the previous vector V for each vector V’ (excluding the primary vector).  

There are the following options: 

1) the value of the  leftmost component tj  with i’j  0 in V’  is equal to 1; 

 2) the value of the  leftmost tj  component with i’j  0  in V’  is greater then 1. 
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 In the case 1),   one can build V   (for  V’ )  as follows: it = i’t  for t{1,…,s},  t  j, t  j-1 

and ij-1= i’j-1+1, ij=0. 

In the case 2), for  j=s  one can build the vector V   (for  V’)  as follows: put it = i’t  for 

t{1,…,s-2}  and is-1= i’s-1+1, is= i’s-1. 

For  j < s  one can build the vector V   (for  V’)  as follows: put it = i’t  for t{1,…,s-1},  t 

 j, t  j-1, t  s and ij-1= i’j-1+1, ij= 0, is= i’j-1. 

Thus, the algorithm SAGCV allows to generate any connecting s-component vector,  

satisfying the condition (*). 

Denote by ܪ௦௠	 the number of all connecting s-component vectors, satisfying the condition 

(*). 

It is obvious, that  

௦௠ܪ ൌ෍ ௦ିଵܪ
௠ି௝	

௠

௝ୀ଴
. 

We can parallelize  the process generation the connecting s-component vectors, satisfying 

the condition (*),  on m+1 processes. To this end, each working processor generates a subset 

of all  (s-1)-component vectors (ts ts-1… t2),  satisfying the condition i2 +…+ is = m-j, where j 

 {0,1,…,m}, and appends for each vector  the additional component t1   equal  to j .  Then  the 

control processor p0 sums received subsets and gets  the set  of all connecting s-component 

vectors. 

Let T(n,m,s,k,ks)  denote the set of all connecting s-component vectors with parameters n, 

m, s, k, ks . 

 It is obvious, that  

  | T(n,m,s,k, ks  )|= Hs
m = Cs+m-1

m.  

To put together the  short vectors from the sets S0(k), S1(k),…, Sm(k), S0(ks), S1(ks),…, 

Sm(ks) in a single  n-component  Boolean vector, one has to perform the operation of the 

Cartesian  product of sets, the numbers of which are indicated in the corresponding connecting 

s-component vector t = tsts-1…t1 . 

If, for example, S1(4) ={0001, 0010, 0100,1000}, S2(4)={0011,0101,0110, 1001, 1010, 

1100}, S1(5) ={00001, 00010, 00100, 01000, 10000} and  T(13,4,3,4,5)={400, 310, 220, 130, 
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040, 301, 211, 121 ,031, 202, 112, 022, 103, 013, 004}, then the connecting 3-component vector 

211 T(13,4,3,4,5) allows one to connect three short vectors in 120 13-component vectors: 

0011 0001 00001,0011 0010 00001,0011 0100 00001,01010001 00001, … , 1100 1000 

00001,  1100 1000 00010,  1100 1000 00100, 1100 1000 01000, 1100 1000 10000.  

With the help of all 15 connecting 3-component vectors from T(13,4,3,4,5),  we can 

generate all 715 (13,4)-combinations, presented by 13-component vectors, each of which 

contains exactly 4 units. 

Thus, with the help of the all corresponding connecting s-component vectors from 

T(n,m,s,k,ks), one can generate  all the  n-component  Boolean vectors, corresponding to all 

combinations without repetitions of m out n  of objects. 

3.3. Parallel algorithm  PAGC2(n,m;S) 

To parallel the computations with the help of our parallel algorithm PAGC2(n,m;S), it is 

necessary to perform the following nine steps. 

 1. Preparing input data for generating of short Boolean vectors 

The control processor p0, using  the algorithm A1(m, n; s, k, ks ), prepares the input data 

for generating short  Boolean vectors and sends its  to the processing processors  p1,…,p2m-1. 

When assigning the value of k, we have to take into account the limitation:  the sequential 

algorithm SAGC must be able to generate all ks-component Boolean vectors, each of which 

containing ij    m  units.  It is more conveniently, to determine the value of k  to be equal to 

m, but the algorithm can be applied also in the case of m  <  k. 

2. Generation short Boolean vectors 

For  j  {1,…,2m-1}  each processing processor pj,  by using the algorithm  

 SAGC(j,k; Sj(k)),   generates (k, j)-combinations or (ks, j)-combinations and  sends to the 

control processor p0   the  set Sj(k)  or Sj(ks)  with short  Boolean vectors.  Obviously, may  not 

generate short vectors from sets S0(m), Sm(m), S0(ks). However, in the case  ks > k=m  we must  

generate short vectors from Sm(ks). 

3. Summarizing sets of short Boolean vectors 

The control processor p0, by using the algorithm A3(m, n, s, k, ks; S, j), sums received sets 

of short vectors (S0(k)  S1(k) … Sm(k)  S0(ks)   S1(ks)   … Sm(ks)   = S), prepares  
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the input data and  sends  to processing processors the  parameters, required to generate  

connecting s-component vectors:  the set S  of all short vectors and value of the component t1 , 

i.e. i1 = j, where j {0,1,2,…, m}.  

4. Generation connecting vectors 

Each pi,  where i  {1,…,m+1},  using the algorithm A4(m, n, s, k, ks,  j; Tj (n, m, s, k, ks)), 

for the given parameter i1 = j  generates (with the  help of  the algorithm SAGCV)  connecting 

(s-1)-component vectors, satisfying the condition i2 +…+ is = m-j, and appends for each vector  

the additional component equal  to j . Then  it sends the set of connecting s-component vectors 

Tj(n,m,s,k,ks) to  p0.  

5. Summarizing sets of connecting vectors 

The control processor p0 with the  help of  the algorithm A5(T1(n,m,s,k,ks),..., Tm+1(n,m,s, 

k, ks); T (n,m,s, k, ks))  sums received subsets and gets  the set  T (n,m,s,k,ks) with all 

connecting s-component vectors. 

6. Preparing input data for connection of  short Boolean vectors 

 The control processor p0 ,  by  using  the algorithm  

A6(T(n,m,s,k,ks),S; (tsts-1…t2t1)i , Si1,…, Sis ), prepares input data, required to connect short 

vectors, i.e.  a  connecting s-component vector together with corresponding  sets of short 

vectors. 

The maximum number of processing processors,  required for parallel connection of short 

vectors, equals to  r=│T (n,m,s,k,ks)│. Thus, the algorithm PAGC2 allows one to use   

NP (s+m-1)*(s+m-2)*…*(m+1) / (s-1)! computing processors, where s=[n/m]. 

However, to reduce the cost of the solution for large n and m, the control processor p0  may 

not prepare the data for all r computing processors, but only for one group (gl) from q   r 

processors, where l {1,…,L}, L=]r/q[.  

 So the first step on p.6 is to check the condition l   L.  If the condition is met, then p0 

prepares the data for the  next group,  and moves to p.7. Otherwise, p0   moves to p.9. 
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7. Connection of short Boolean vectors 

 By using the algorithm A7((tsts-1…t2t1)i , Si1,…, Sis; Cj), each processing processor pj, 

where j {1,…,q},  q r=│T(n,m,s,k,ks)│,  performs the operation of the  Cartesian  product 

of sets  with the indices from the corresponding connecting s-component vector (tsts-1…t1)i  and 

sends the subset Cj  of n-component Boolean vectors to the control processor. 

8. Summarizing sets of (n,m)-combinations 

 The control processor p0, using  the algorithm A8(C1,..., Cq ; Cl), where l {1,…,L},    sums 

the solutions  (C1... Cq  =Cl ) and moves to p. 6. 

9. Ending generation of (n,m)-combinations sets 

 The  control processor  p0, using  the algorithm A9(C1
,...,CL;C), sums the solutions  

(C1... CL
 =C)  and ends  the generation (n,m)-combinations without repetitions.  

Interaction of sequential algorithms in the composition of the proposed parallel algorithm 

PAGC2 for generating (n,m)-combinations implements the computer system, operating 

according to the following schedule     

H(PAGC2) = ( (A1, p0 ), (SAGC, p1 , … , p2m-1), (A3, p0 ), (A4, p1 , … , pm+1), (A5, p0 ), 

1 (A6, p0 ), (A7, p1 , … , pq), (A8, p0 ) 1 , (A9, p0 )), 

where a record (Aj,pi)  indicates that the processor pi   performs the algorithm Aj. 

The parallel algorithm PAGC2  contains   the following 9 serial algorithms: A1 –for 

preparation of the  data for generating short Boolean vectors; SAGC - for enumerating  short 

Boolean vectors;  A3 –for summation   of short Boolean vectors sets and for preparation of the  

data for generating of connecting s-component vectors;    A4 –for generating of connecting s-

component vectors; A5–for summation   subsets of connecting s-component vectors;  A6 –for 

preparation  the  data for connection of short vectors using a special connecting s-component 

vector; A7 –to perform the product of  short vectors sets using a special connecting s-component 

vector; A8 –for summation   of subsets of n–component vectors; A9 –for ending the generation 

of (n,m)-combinations without repetitions.  
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4. Conclusion   

This article examines how to parallelize the process of generating the combinations without 

repetitions, represented by Boolean vectors. Such a submission is more convenient for 

parallelization of computations, compared with representation of combinations by sequences of 

numbers ordered lexicographically. 

For generation the Boolean vectors corresponding to (n,m)-combinations the effective 

sequential algorithm SAGC is proposed. It is proved that the heuristic algorithm SAGC allows 

one to generate all possible (n,m)-combinations. 

Based on SAGC, two parallel algorithms are proposed.  

The suggested adaptive parallel algorithms PAGC1  and PAGC2  allows  one to solve tasks 

of  high dimensionality and to use for this purpose a multiprocessor computing system with an 

arbitrary number of independent working processors. 

The advantage of our adaptive parallel algorithm PAGC1  is the ease decomposition of 

large task into subtasks for solving them independently on  several computing processors, as 

well as the very simple summation of generated combinations subset. PAGC1 uses an arbitrary 

number of independent computing processors NP  (n-m)*(m-1), that is significantly higher 

than the similar characteristic of the algorithm [4]. 

   While the parallel algorithm PAGC1 is  effective  for generating (n,m)-combinations 

when n does not exceed the size of  one machine word, our adaptive parallel algorithm PAGC2  

allows one to generate   (n,m)-combinations  when n is equal to the size of  several machine 

words. 

The  algorithm PAGC2 firstly allows  one to generate short (m-component) vectors on 

several computing processors. For connecting the short vectors into n-component Boolean 

vectors in PAGC2  is need the special algorithm SAGCV to generate connecting [n/m] -

component vectors.  

However, this algorithm  allows one to parallelize the generation of (n,m)-combinations on 

a larger  number  of processes. PAGC2 uses an arbitrary number of independent computing 

processors  NP (s+m-1)*(s+m-2)*…*(m+1) / (s-1)!, where s = [n/m]. 

Thus, we can conclude that the algorithms PAGC1  and PAGC2  are competitive. 
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