
STUDIA INFORMATICA

Nr 1-2 (21) Systems and information technology 2017

Sergey NOVIKOV

Institute of Mathematics and Computer Science,

The John Paul II Catholic University of Lublin,

Konstantynów Street 1H, 20-708 Lublin, Poland

Parallelization of computations for generating combinations

Abstract. An effective sequential algorithm and two parallel algorithms for generating combinations

without repetitions of m out n of objects, represented by Boolean vectors, are proposed. One of them

allows one to calculate starting and ending combinations for the subset, generated by each computing

processor. The second algorithm firstly generates short (m-component) vectors on several computing

processors. After that, by using special [n/m]-component vectors, it connects the short vectors into n-

component Boolean vectors, each of which containing of exactly m units.

Keywords: sequential algorithm, parallel algorithm, Boolean vector, combinations without repetitions,

combinations with repetitions, parallelization of computations

1. Introduction

The combinatorial analysis (combinatorics) plays an important role in computer

science due to its many applications when designing discrete computing devices and control

systems [1]. One of the classic tasks of combinatorics is to generate all the combinations without

repetitions of n elements taken m at a time ((n,m)- combinations). Matching algorithms have

been developed, programmed and used in automated systems of designing digital devices and

other applications [1,2]. Combinations in known algorithms are usually represented as a

sequence of numbers in the lexicographical order, which is not suitable for some applications.

In addition, the conventional representation of combinations makes it difficult to parallelize the

computations.

For generating (n,m)-combinations with large n and m, it is more useful to represent

them as n-component Boolean vectors, each of which containing of exactly m units (and n-

m zeros, of course)..

48 S. Novikov

At present, to enhance the performance of computations when solving problems of large

dimensions (in engineering, mathematics and other disciplines) high-performance

multiprocessor computing systems (supercomputers, clusters) are used. While paralleling

solving algorithms of difficult design problems often one needs to parallelize the process

generating combinations without repetitions.

Several parallel algorithms for generating combinations without repetitions have been

proposed [2, 3, 4, 5, 6].

In particular, the algorithms proposed in [2,3] are focused on multiprocessor

associative computing systems, which use SIMD (Single Instruction Multiple Data)

architecture. In such systems, information processing comes from associative storage devices,

where information is selected not at a certain address, but by its content. In modern

supercomputers (see TOP 500) instead of SIMD architecture a MIMD (Multiple Instruction

Multiple Data) architecture is used.

In addition, an adaptive algorithm [2] requires arbitrary-precision arithmetic, moreover

it is necessary to schedule the combinations, that is, to decide when each combination will be

computed, before the moment where each processor can independently generate its

combinations subset [4].

Unlike the adaptive algorithm [2], that uses an arbitrary number of independent

computing processors NP  n!/m!*(n-m)!, the parallel algorithm [5] requires a constant

number of computing processors. Adaptive algorithms allow to use multiprocessor computing

systems more effectively.

In the paper [4] an adaptive parallel algorithm was presented , where each combination

is associated with a uniquely determined integer. The numeric representations of (n,m)-

combinations makes difficult to split a task into subtasks for solving them independently on

several computing processors (NP  n-m+1). That is why in the paper [4] real tests are

described, where the number of processing processors does not exceed 11.

In the author's paper [6] an adaptive parallel algorithm fог generating (n,m)-

combinations presented by Boolean vectors was presented. Such a submission is more

convenient for parallelization of computations, if compared with the representation of

combinations by sequences of numbers in the lexicographical order. The algorithm [6] allows

us to use NP  2k working processors, where k [m/2] and k < log2 r, r beind the number of

planned to generate processors in our cluster. The drawback of the algorithm is that in the

Parallelization of computations for generating combinations 49

corresponding multi-processor computing system in some nodes the calculations are duplicated

by calculations, that are performed in other nodes.

2. Generating Boolean vectors, corresponding to (n,m)- combinations

 We will represent an (n,m)-combination (m-combination of an n-set) as an n-component

Boolean vector A= an…a2a1, where exatly m components are equal to 1. For example, we can imagine

the (8,4)-combination (1,3,4,8), selected from the set {1,2,3,4,5,6,7,8} by the 8-component Boolean

vector 10001101, where components a1=1, a3=1, a4=1 and a8=1. It is obvious, that n-component

Boolean vector can be regarded as word of length n in the alphabet {0,1}.

To generate (n,m)- combinations it is convenient to assume that the source Boolean

vector A = an…a2a1 contains m  [n/2] unit components (1s), because a Boolean vector with

a large number of 1s we can always replace by the inverted vector.

In our algorithm the initial combination A0 is written as an n-component Boolean vector

bm(n) with m units, located in positions 1,2,...,m. The final combination is written as an n-

component Boolean vector Af = cm(n) with m units, where the last (leftmost) m components

are equal to 1.

The vector A0 (also as Af) contains one block with m units. The vector Ai, were i  0

and i  f, may contain few blocks with k units, were 1 k < m. Then one of these blocks will

call the rightmost block B1. Except the rightmost block B1, this vector Ai contains the leftmost

block units B2.

Sequential algorithm SAGC(n,m;S)

1. Write the primary combination A0 = bm(n) in the set S.

2. For given i  0 and 1 k  m, find in Ai the rightmost block B1 with k units. Units from

B1 located in positions j, j+1,…,j+k-1, but aj+k =0, where k  1, j=1 or j >1 but a1 = 0, a2 =0,…, aj-1

=0.

3. Find in B1 the leftmost 1 and move it to the left by one digit, and all other k -1 units from

B1 move to the right maximum. Modernize the vector Ai as follows: aj+k-1 =0, aj+k = 1, a1 =1, a2 =1,…,

ak-1 =1. After the modernization we obtain Ai+1 , which we write in S.

4. If Ai+1 = Af = cm(n), move to p. 5. Otherwise, put Ai+1 := Ai and move to p.2.

5. Print the set S. Stop.

50 S. Novikov

For example, the (6,3)-combinations generated by SAGC are in S={000111, 001011,

001101, 001110, 010011, 010101, 010110, 011001, 011010, 011100, 100011, 100101,

100110, 101001, 101010, 101100, 110001, 110010, 110100, 111000}.

It is easy to see that our heuristic algorithm SAGC really generates all (n,m)-

combinations.

To this end, we note that for each vector from S there is a corresponding number. The

number corresponding to the vector Ai+1 is higher, compared with the number corresponding

to Ai. Consider the vector Ai, where aj =1, aj+1 =1,…,aj+m-1 =1 and a1 =0, a2 =0,…,aj-1 =0, aj+m

= 0, aj+m+1 = 0,…, an =0.

For this Ai the corresponding number is equal to

N(Ai) = 2j+m-1 +(2j +2j+1 +…+2j+m-2).

The numbers in parenthesis form a geometric progression with the ratio 2. The sum in

parenthesis equals 2j+m-1 – 2j+1. Thus, the number that corresponds to the leftmost 1 of Ai, is

greater than the sum of numbers corresponding to the remaining m-1 unit components.

Naturally, this number is greater than the sum of the numbers corresponding to m-1 units, which

are located to the right. When the leftmost 1 moves by one digit to the left, the corresponding

to this group number exceeds the sum of the numbers, corresponding to the rest of the m-1

units, irrespective of their location. Thus, the number corresponding to each regular

combination Ai+1 is greater than the number corresponding to any of the previous combinations.

In this way repeating combinations are excluded.

Next, we show that any possible (n,m) -combinations can be generated by using the

algorithm SAGC. For this purpose it is enough to specify how to build the previous combination

for each considered combination (excluding the primary combination).

We have the following options:

1) the vector Ai contains the block B0 with m units located the rightmost (primary

combination), the leftmost (final combination) or in the middle of Ai;

2) the vector Ai contains the rightmost block B1 with k < m units located the

rightmost or in the middle of Ai.

In the case 2), we have three subcases:

2a) B1 with k < m units is located on the rightmost and between its the leftmost 1 and

the rightmost 1 of next (on the left) block units B2 is located only one zero, i.e. a1 =1,…, ak

=1, ak+1 =0, ak+2 =1;

Parallelization of computations for generating combinations 51

 2b) B1 with k < m units is located on the rightmost and between its the leftmost 1

and the rightmost 1 of next block (on the left) B2 with t  1 units are located l >1 zeros, i.e. a1

=1,…, ak =1, ak+1 =0,…, ak+l =0, a k+l +1 =1,…, a k+l +t =1;

2c) B1 with k < m units is located in the middle of Ai.

In the case 1), Ai-1 differs from Ai as follows: the rightmost 1 from B0 is moved

with one digit to the right.

In the case 2a), Ai-1 differs from Ai as follows: the rightmost 1 from the block B2 is

moved by one digit to the right, i.e. in Ai we have ak+1 =0, ak+2 =1 but in Ai-1 we have ak+1 =1,

ak+2 =0.

In the case 2b), Ai-1 differs from Ai as follows: the rightmost 1 from the block B2 is

moved by one digit to the right (al =1) and all 1s from B1 are moved by k digits to the left,

i.e. in Ai-1 we have al-1 =1,…, al-k =1, al-k-1 =0,…, a1 =0.

In the case 2c), Ai-1 differs from Ai as follows: the rightmost 1 from the block B1 is

moved by one digit to the right.

The availability of ways to build for each combination of the previous combination one

proves the fact that using the heuristic algorithm SAGC we can generate all possible (n,m)-

combinations. Thus, /S/= Cn
m.

3. Parallelization the process of generating combinations

3.1. Generating Boolean vectors of length of a machine word

The rules of building the previous combination for each regular one help us to parallelize

the process of generating the (n,m)-combinations on q>1 processes.

To this end, the control processor defines the starting Aj,0 and ending Aj,k combinations

for the subset Sj , generated by each computing processor pj, where 1 j q.

For example, it is easy to show the method to parallelize the generation of (n,m)-

combinations on q = m processes.

To parallel the computations with the help of our parallel algorithm PAGC1 (n,m;S),

it is necessary to perform the following three steps:

1) The control processor p0, using the algorithm

 A1(n,m ; A1,0 , A2,0 , …, Am,0 , A1,k , A2,k,…, Am,k), assigns the previous combinations Aj,0:

52 S. Novikov

 A1,0 with m units, located on the rightmost, for the computing processor p1; A2,0 with m units,

located on the positions i, i-1, …, i-m+1, where i=[(n-m)/2]+m+1, for the computing processor p2;

…; Aj,0 with j-2 units, located in the positions n, n-1,…,n-(j-3), and all other m-(j-2) units, located

on the rightmost for the computing processor pj with 3 j m.

Then p0 assigns ending combinations Aj,k as Boolean vectors:

A1,k with m-1 units, located in the positions i, i-1,…, i-m+2, with i=[(n-m)/2]+m+1, with one 0,

located in the position i-m+1, and with one 1, located in the position i-m, for the computing processor

p1; A2,k with m units, located in the positions n-1, n-2,…, n-m, for the computing processor p2; …;

Aj,k with j-2 units, located in the positions n, n-1,…,n-(j-3), where 3 j m-1, with one 0, located in

the position n-j+2, and with m-(j-2) units, located in the positions n-j+1, n-j, …, n-m-1, for the

computing processor pj , where 3 j m-1;

 Am,k with m units, located in leftmost positions, for the computing processor pm.

For example, for n=10, m=4 we have A1,0 = 0000001111, A1,k =0011101000, A2,0 =

0011110000, A2,k =0111100000, A3,0 = 1000000111, A3,k =1011100000, A4,0 = 1100000011,

A4,k =1111000000.

2) Then each computing processor pj , by using the algorithm A2(Aj,0, Aj,k; Sj), i.e. SAGC,

generates (n,m)-combinations, writes it in the set Sj, where j{1,…,m}, and sends the results to the

control processor p0.

3) The control processor p0, by using the algorithm A3(S1, S2,…, Sm ; S), sums the sets (S1 

S2 … Sm = S) and ends the generation of all the (n,m)-combinations.

It is easy to suggest a method to parallelize the process of generating (n,m)-

combinations on q > m processes.

For maximum parallelization we propose the following method to build initial

combinations of subsets for generating by computing processors.

Let us build the Boolean vectors Aj containing two blocks of units: the rightmost

block B1 with j=m-k units; the leftmost block B2 with k  m-2 units, located in the digits

n,n-1,…,n-(k-1), where k  {0,1,...,m-2}.

First, we build n-m Boolean vectors for B1 with m units:

A1, where the leftmost 1 of the rightmost block B1 is located in the digit m;

 A2, where the leftmost 1 of the rightmost block B1 is located in the digit m+1;...;

 An-m, where the leftmost 1 of the rightmost block B1 is located in the digit n-1.

Then, we build n-m Boolean vectors for B1 with m-1 units:

An-m+1, where the leftmost 1 of the rightmost block B1 is located in the digit m-1;

Parallelization of computations for generating combinations 53

An-m+2, where the leftmost 1 of the rightmost block B1 is located in the digit m;...; A2(n-

m), where the leftmost 1 of the rightmost block B1 is located in the digit n-2.

At last, we build n-m Boolean vectors for B1 with j= m-k=2 units, where the leftmost

1s of rightmost blocks B1 are located in digits: 2, 3,…,n-k-1.

For each rightmost block B1 with j units, where j  {2,…,m}, we can build n-m such

n-component Boolean vectors.

Thus, our method allows one to build (n-m)*(m-1) n-component Boolean vectors.

However, not every one of these vectors is appropriate as an initial combination of the

subset Sj for generation by some computing processor pj, where 1  j  (n-m)*(m-1),

according to our method.

As initial combinations are not suitable the following vectors:

1) The vector Aj, containing B1 with m units, located in the digits n-1, n-2 ,…, n-m;

2) The vector Aj, containing B1 with m-k units, and the leftmost block B2 with k

units, located in the digits n, n-1,…, n-k+1, such that between it’s the rightmost 1 and the

leftmost 1 of B1 there is only one zero.

Every vector with properties described above is not suitable as the initial combination

of a subset, for generation by one of computing processors according to our method, since

this subset has the cardinality equal to 1.

Therefore, the vectors with described properties we propose to use as final combinations

Aj,k of Sj. For Aj,k we build the initial combination Aj,0 as follows. The leftmost block B2

with k units in Aj,0 coincides with B2 from Aj,k , one 1 is located in the digit n-k-1, but the

other m-k-1 units (from B1 in Aj,0) are located in the digits a, a-1, …, a-(m-k-2), where a

=(n-k-1) -](n-m)/2[, k  {0,1,…,m-3}.

Notice, that the vector Aj,0 with two 1s in the rightmost block B1 and m-2 units in

the leftmost block B2, located in the digits n, n-1,…, n-k+1, such that between it’s the

rightmost 1 and the leftmost 1 of B1 is located only one zero, may be used as an initial

combination of the last subset of combinations.

For each initial combination, built by our method, the control processor can easily

assign the final combination.

For example, in the case n=9, m=4, we have: A1,0 = 000001111, A1,k = 000011101,

A2,0 = 000011110, A2,k = 000111010, …, A4,0 = 001111000, A4,k = 010011010, A5,0 =

010011100, A5,k = 011110000,…, A9,0 =100111000, A9,k = 101001010, A10,0 = 101001100,

A10,k = 101110000,…, A15,0 = 110110000, A15,k = 111100000.

54 S. Novikov

Thus, the algorithm PAGC1 allows to parallelize the generation of (n,m)-combinations

on (n-m)*(m-1) processes.

The ease summation of the results is one of the advantages of the described approach.

The advantages of the proposed approach is also the possibility to parallelize the calculations

on (n-m)*(m-1) processes.

The parallel algorithm PAGC1 is effective for generating of (n,m)-combinations when

n does not exceed the size of one machine word.

Modern processors general purpose computers usually use machine words with 32 or

64 bits.

Therefore, we propose a different approach for generation of (n,m)-combinations with

large n and m.

3.2. Reduction of the problem of generating (n,m)-combinations to tasks of generating

short vectors

 The task generating the (n,m)-combinations represented by Boolean vectors can be

reduced to the solution of several tasks generating short Boolean vectors. To this end, we can

divide an n-component Boolean vector into s = [n/m] parts, each of the length k = m, except

the rightmost. The length of the rightmost part of an n-component Boolean vector is equal to

ks=n-k(s-1). Each of short Boolean vectors contains ij  m units.

The sum of the 1s in all s parts must satisfy the condition

 i1 + i2 +…+ is = m. (*)

We can generate the short (k-component and ks-component) vectors in parallel on several

(not more than 2m) processors working independently. The number of 1s in each of these

vectors varies from 0 to m.

If ks= k=m, it’s enough to generate only ∑ ௞ܥ
௜௠

௜ୀ଴ 			 short vectors. These vectors we can

place in sets S0(k), S1(k),…, Sm(k) , where the set Si(k) contains vectors, each of which

contains exactly i 1s. It is obvious, that | Si(k)| = Ck
i. The set S0(k) consists of one vector,

whose all k components are equal to 0. Similarly, the set Sm(k) consists of one vector, whose

all k components are equal to 1.

Each set Si(k) of short vectors (excepting S0(k) and Sm(k)) can be generated by using the

sequential algorithm SAGC for generating (k,i)-combinations on one of m-1 processors p1

,p2,…,pm-1.

Parallelization of computations for generating combinations 55

If ks k=m, still m processing processors are required for generating m sets of ks-

component vectors Si(ks), where |Si(ks)|= Cks
i and i  {0,1,…,m}. Each vector from Si(ks)

contains exactly i units. In the case ks k=m, it is required to generate ∑ ௞ܥ
௜௠

௜ୀ଴ 			 m-component

vectors and ∑ ௞௦ܥ
௜௠

௜ୀ଴ short vectors with ks components, where i  {0,1,…,m}.

After completing the generation of short Boolean vectors, the latest have to be merged

into n-component Boolean vectors, each of which containing exactly m units.

 The easiest way to combine short vectors in an n-component we have when s = 2.

In this case, for even n we have k=ks =m= n/2, and for odd n we get k=[n/2], ks=n-k.

To merged the short vectors into n-component Boolean vectors we perform the operation

of the Cartesian product of sets Si(k) and Sj(ks), such that i+j=m.

The number of (n,m)-combinations, that are generated in this way, is computed by the

formula

௡௠ܥ ൌ ෌ ௞ܥ
௠ି௜ ∗ ௞௦ܥ

௜ 	
௠

௜ୀ଴
.

Thus you can generate (n,m)-combinations when ks does not exceed the size of one machine

word and m  [n/2].

To generate (n,m)-combinations with large values n and m we can divide corresponding

n-component Boolean vectors into s  3 parts.

In the case s > 2, to combine short vectors in an n-component vector, a special connecting

s-component vector t=tsts-1…t1 is required, where the component tj is equal to ij, ij 

{0,1,2,…,m}, j  {1,2,…,s}, i1 + i2 +…+ is = m.

Easily seen that the problem of generation the connecting s-component vectors, satisfying

the condition (*), can be reduced to the known problem generating of the options distribution

of m objects (“balls”) into s categories (“urns”), for which we can use the well-known

algorithms generating combinations with repetitions [1].

So, in the case s = 3, m = 4, all combinations with repetitions are enumerated in the

following set {1111, 1112, 1122, 1222, 2222, 1113, 1123, 1223, 2223, 1133, 1233, 2233, 1333,

2333, 3333} and the corresponding connecting 3-component vectors, satisfying the condition

i1 + i2 + i3 = 4, are enumerated in the following set {400,310,220,130,040, 301,211,121,031,

202,112,022, 103,013,004}.

56 S. Novikov

To generate the set S of all connecting s-component vectors, satisfying the condition (*), it

is convenient to use the algorithm proposed below.

Sequential algorithm SAGCV(s,m;S)

1) The primary vector V0, where i1 = m, i2 = 0, …, is = 0, write in the set S.

2) To get the next vector V’=i’si’s-1…í’1, find in the previous vector V=isis-1…í1 the

leftmost component tj with ij  0, where j < s, and modify V. We have i’t = it for

t{1,…,s-1}, t  j, t  j+1 and i’j = ij -1, i’j+1= 1. Then write V’ in the set S.

If j+1 = s, transition to p. 3. Otherwise, move to the p. 2.

3) To get the next vector V’, find in the previous vector V the leftmost tj with ij  0,

where j < s. If j=s-1, transition to p. 4. Otherwise, modify V:

i’t = it for t{1,…,s-1}, t  j, t  j+1 and i’j = ij -1, i’j+1= is +1, i’s= 0.

Write V’ in the set S and move to p. 2.

4) To get the next vector V’, modify V: i’t = it for t{1,…,s-2}, t  s, t  s-1 and i’s-

1:= is-1 -1, i’s:= is +1. Then write V’ in the set S. If i’s= m, move to p. 5.

If i’s-1 =0, transition to p. 3. Otherwise, move to the p. 4.

5) Print the set S. Stop.

For example, all connecting 4-component vectors, satisfying the condition i1 + i2 + i3+ i4 =

4, generated by SAGCV are in S= {0004, 0013, 0103, 1003, 0022, 0112, 1012, 0202, 1102,

2002, 0031, 0121, 1021, 0211, 1111, 2011, 0301, 1201, 2101, 3001, 0040, 0130, 1030, 0220,

1120, 2020, 0310, 1210, 2110, 3010, 0400, 1300, 2200, 3100, 4000}.

The algorithm SAGCV really generates all connecting s-component vectors, satisfying the

condition (*).

It is clear that repeating combinations are excluded.

Next, we show that any of possible connecting s-component vectors (satisfying the

condition (*)) can be generated by using the algorithm SAGCV. For this purpose, it is enough

to specify how to build the previous vector V for each vector V’ (excluding the primary vector).

There are the following options:

1) the value of the leftmost component tj with i’j  0 in V’ is equal to 1;

 2) the value of the leftmost tj component with i’j  0 in V’ is greater then 1.

Parallelization of computations for generating combinations 57

 In the case 1), one can build V (for V’) as follows: it = i’t for t{1,…,s}, t  j, t  j-1

and ij-1= i’j-1+1, ij=0.

In the case 2), for j=s one can build the vector V (for V’) as follows: put it = i’t for

t{1,…,s-2} and is-1= i’s-1+1, is= i’s-1.

For j < s one can build the vector V (for V’) as follows: put it = i’t for t{1,…,s-1}, t

 j, t  j-1, t  s and ij-1= i’j-1+1, ij= 0, is= i’j-1.

Thus, the algorithm SAGCV allows to generate any connecting s-component vector,

satisfying the condition (*).

Denote by ܪ௦௠	 the number of all connecting s-component vectors, satisfying the condition

(*).

It is obvious, that

௦௠ܪ ൌ෍ ௦ିଵܪ
௠ି௝	

௠

௝ୀ଴
.

We can parallelize the process generation the connecting s-component vectors, satisfying

the condition (*), on m+1 processes. To this end, each working processor generates a subset

of all (s-1)-component vectors (ts ts-1… t2), satisfying the condition i2 +…+ is = m-j, where j

 {0,1,…,m}, and appends for each vector the additional component t1 equal to j . Then the

control processor p0 sums received subsets and gets the set of all connecting s-component

vectors.

Let T(n,m,s,k,ks) denote the set of all connecting s-component vectors with parameters n,

m, s, k, ks .

 It is obvious, that

 | T(n,m,s,k, ks)|= Hs
m = Cs+m-1

m.

To put together the short vectors from the sets S0(k), S1(k),…, Sm(k), S0(ks), S1(ks),…,

Sm(ks) in a single n-component Boolean vector, one has to perform the operation of the

Cartesian product of sets, the numbers of which are indicated in the corresponding connecting

s-component vector t = tsts-1…t1 .

If, for example, S1(4) ={0001, 0010, 0100,1000}, S2(4)={0011,0101,0110, 1001, 1010,

1100}, S1(5) ={00001, 00010, 00100, 01000, 10000} and T(13,4,3,4,5)={400, 310, 220, 130,

58 S. Novikov

040, 301, 211, 121 ,031, 202, 112, 022, 103, 013, 004}, then the connecting 3-component vector

211 T(13,4,3,4,5) allows one to connect three short vectors in 120 13-component vectors:

0011 0001 00001,0011 0010 00001,0011 0100 00001,01010001 00001, … , 1100 1000

00001, 1100 1000 00010, 1100 1000 00100, 1100 1000 01000, 1100 1000 10000.

With the help of all 15 connecting 3-component vectors from T(13,4,3,4,5), we can

generate all 715 (13,4)-combinations, presented by 13-component vectors, each of which

contains exactly 4 units.

Thus, with the help of the all corresponding connecting s-component vectors from

T(n,m,s,k,ks), one can generate all the n-component Boolean vectors, corresponding to all

combinations without repetitions of m out n of objects.

3.3. Parallel algorithm PAGC2(n,m;S)

To parallel the computations with the help of our parallel algorithm PAGC2(n,m;S), it is

necessary to perform the following nine steps.

 1. Preparing input data for generating of short Boolean vectors

The control processor p0, using the algorithm A1(m, n; s, k, ks), prepares the input data

for generating short Boolean vectors and sends its to the processing processors p1,…,p2m-1.

When assigning the value of k, we have to take into account the limitation: the sequential

algorithm SAGC must be able to generate all ks-component Boolean vectors, each of which

containing ij  m units. It is more conveniently, to determine the value of k to be equal to

m, but the algorithm can be applied also in the case of m < k.

2. Generation short Boolean vectors

For j  {1,…,2m-1} each processing processor pj, by using the algorithm

 SAGC(j,k; Sj(k)), generates (k, j)-combinations or (ks, j)-combinations and sends to the

control processor p0 the set Sj(k) or Sj(ks) with short Boolean vectors. Obviously, may not

generate short vectors from sets S0(m), Sm(m), S0(ks). However, in the case ks > k=m we must

generate short vectors from Sm(ks).

3. Summarizing sets of short Boolean vectors

The control processor p0, by using the algorithm A3(m, n, s, k, ks; S, j), sums received sets

of short vectors (S0(k)  S1(k) … Sm(k)  S0(ks)  S1(ks)  … Sm(ks) = S), prepares

Parallelization of computations for generating combinations 59

the input data and sends to processing processors the parameters, required to generate

connecting s-component vectors: the set S of all short vectors and value of the component t1 ,

i.e. i1 = j, where j {0,1,2,…, m}.

4. Generation connecting vectors

Each pi, where i  {1,…,m+1}, using the algorithm A4(m, n, s, k, ks, j; Tj (n, m, s, k, ks)),

for the given parameter i1 = j generates (with the help of the algorithm SAGCV) connecting

(s-1)-component vectors, satisfying the condition i2 +…+ is = m-j, and appends for each vector

the additional component equal to j . Then it sends the set of connecting s-component vectors

Tj(n,m,s,k,ks) to p0.

5. Summarizing sets of connecting vectors

The control processor p0 with the help of the algorithm A5(T1(n,m,s,k,ks),..., Tm+1(n,m,s,

k, ks); T (n,m,s, k, ks)) sums received subsets and gets the set T (n,m,s,k,ks) with all

connecting s-component vectors.

6. Preparing input data for connection of short Boolean vectors

 The control processor p0 , by using the algorithm

A6(T(n,m,s,k,ks),S; (tsts-1…t2t1)i , Si1,…, Sis), prepares input data, required to connect short

vectors, i.e. a connecting s-component vector together with corresponding sets of short

vectors.

The maximum number of processing processors, required for parallel connection of short

vectors, equals to r=│T (n,m,s,k,ks)│. Thus, the algorithm PAGC2 allows one to use

NP (s+m-1)*(s+m-2)*…*(m+1) / (s-1)! computing processors, where s=[n/m].

However, to reduce the cost of the solution for large n and m, the control processor p0 may

not prepare the data for all r computing processors, but only for one group (gl) from q  r

processors, where l {1,…,L}, L=]r/q[.

 So the first step on p.6 is to check the condition l  L. If the condition is met, then p0

prepares the data for the next group, and moves to p.7. Otherwise, p0 moves to p.9.

60 S. Novikov

7. Connection of short Boolean vectors

 By using the algorithm A7((tsts-1…t2t1)i , Si1,…, Sis; Cj), each processing processor pj,

where j {1,…,q}, q r=│T(n,m,s,k,ks)│, performs the operation of the Cartesian product

of sets with the indices from the corresponding connecting s-component vector (tsts-1…t1)i and

sends the subset Cj of n-component Boolean vectors to the control processor.

8. Summarizing sets of (n,m)-combinations

 The control processor p0, using the algorithm A8(C1,..., Cq ; Cl), where l {1,…,L}, sums

the solutions (C1... Cq =Cl) and moves to p. 6.

9. Ending generation of (n,m)-combinations sets

 The control processor p0, using the algorithm A9(C1
,...,CL;C), sums the solutions

(C1... CL
 =C) and ends the generation (n,m)-combinations without repetitions.

Interaction of sequential algorithms in the composition of the proposed parallel algorithm

PAGC2 for generating (n,m)-combinations implements the computer system, operating

according to the following schedule

H(PAGC2) = ((A1, p0), (SAGC, p1 , … , p2m-1), (A3, p0), (A4, p1 , … , pm+1), (A5, p0),

1 (A6, p0), (A7, p1 , … , pq), (A8, p0) 1 , (A9, p0)),

where a record (Aj,pi) indicates that the processor pi performs the algorithm Aj.

The parallel algorithm PAGC2 contains the following 9 serial algorithms: A1 –for

preparation of the data for generating short Boolean vectors; SAGC - for enumerating short

Boolean vectors; A3 –for summation of short Boolean vectors sets and for preparation of the

data for generating of connecting s-component vectors; A4 –for generating of connecting s-

component vectors; A5–for summation subsets of connecting s-component vectors; A6 –for

preparation the data for connection of short vectors using a special connecting s-component

vector; A7 –to perform the product of short vectors sets using a special connecting s-component

vector; A8 –for summation of subsets of n–component vectors; A9 –for ending the generation

of (n,m)-combinations without repetitions.

Parallelization of computations for generating combinations 61

4. Conclusion

This article examines how to parallelize the process of generating the combinations without

repetitions, represented by Boolean vectors. Such a submission is more convenient for

parallelization of computations, compared with representation of combinations by sequences of

numbers ordered lexicographically.

For generation the Boolean vectors corresponding to (n,m)-combinations the effective

sequential algorithm SAGC is proposed. It is proved that the heuristic algorithm SAGC allows

one to generate all possible (n,m)-combinations.

Based on SAGC, two parallel algorithms are proposed.

The suggested adaptive parallel algorithms PAGC1 and PAGC2 allows one to solve tasks

of high dimensionality and to use for this purpose a multiprocessor computing system with an

arbitrary number of independent working processors.

The advantage of our adaptive parallel algorithm PAGC1 is the ease decomposition of

large task into subtasks for solving them independently on several computing processors, as

well as the very simple summation of generated combinations subset. PAGC1 uses an arbitrary

number of independent computing processors NP  (n-m)*(m-1), that is significantly higher

than the similar characteristic of the algorithm [4].

 While the parallel algorithm PAGC1 is effective for generating (n,m)-combinations

when n does not exceed the size of one machine word, our adaptive parallel algorithm PAGC2

allows one to generate (n,m)-combinations when n is equal to the size of several machine

words.

The algorithm PAGC2 firstly allows one to generate short (m-component) vectors on

several computing processors. For connecting the short vectors into n-component Boolean

vectors in PAGC2 is need the special algorithm SAGCV to generate connecting [n/m] -

component vectors.

However, this algorithm allows one to parallelize the generation of (n,m)-combinations on

a larger number of processes. PAGC2 uses an arbitrary number of independent computing

processors NP (s+m-1)*(s+m-2)*…*(m+1) / (s-1)!, where s = [n/m].

Thus, we can conclude that the algorithms PAGC1 and PAGC2 are competitive.

62 S. Novikov

References

1. Lipski W.: Kombinatoryka dla programistów, Warszawa, Wyd. Naukowo-Techniczne,

WNT, 274 pages, 2004.

2. Akl S.G.: Adaptive and optimal рагаllеl algorithms fог enumerating permutations and

combinations, The Computer Jouma1, 30. pp. 433 – 436, 1987.

3. Kokosiński Z.: On parallel generation of combinations in associative processor

architectures, Tech. Rep. 96-1-007, University of Aizu, Aizu-Wakamatsu, Japan, 14 pages,

1996.

4. Torres M., Goldman A., Barrera J.: A parallel algorithm for enumerating combinations.

Proceeding of the 2003 International Conference on parallel processing.

https://pdfs.semanticscholar.org/d153/cf9b621cb3cbfdf943f5bde1d84c6b01a930.pdf

5. Zhou B.B., Brent R., Qu X., Liang W.F.: A novel parallel algorithm for enumerating

combinations. In International Conference on Parallel Processing, Volume 2, pp. 70 – 73,

1996.

6. Novikov S.: Parallelization of computations for finding the rank of a rectangular matrix.

Studia Informatica, Systems and information technology, Volume 1-2(17), Wyd. UPH,

Siedlce, pp. 49 - 62, 2013.

